library(stratEst) test_that("Example: rock-paper-scissors" , { skip_on_cran() set.seed(1) strategies.mixture = list( "nash" = strategies.RPS$nash, "imitate" = strategies.RPS$imitate ) model.mixture <- stratEst.model(data.WXZ2014,strategies.mixture) expect_equal(-22358.43,round(model.mixture$loglike,2)) }) test_that("Example: Dal Bo & Frechette 2011", { skip_on_cran() set.seed(1) data <- stratEst.data(DF2011,input =c("choice","other.choice"), input.lag = 1 ) model.DF2011 <- stratEst.model(data,strategies.DF2011,sample.id="treatment",verbose=F) expect_equal(0.920,round(as.numeric(model.DF2011$shares$treatment.D5R32[1]),3)) expect_equal(0.080,round(as.numeric(model.DF2011$shares$treatment.D5R32[4]),3)) expect_equal(0.043,round(as.numeric(model.DF2011$shares.se[1]),3)) expect_equal(0.043,round(as.numeric(model.DF2011$shares.se[4]),3)) expect_equal(0.362,round(as.numeric(model.DF2011$gammas.par[1]),3)) }) # test_that("Example: Fudenberg, Rand, Dreber (2012)" , { # skip_on_cran() # set.seed(1) # data <- stratEst.data(FRD2012,input =c("last.choice","last.other") ) # model.FRD2012 <- stratEst.model(data,strategies.FRD2012,sample.id="bc",verbose=F) # expect_equal(0.193,round(as.numeric(model.FRD2012$shares$bc.1.5[2]),3)) # expect_equal(0.139,round(as.numeric(model.FRD2012$shares$bc.1.5[7]),3)) # expect_equal(0.053,round(as.numeric(model.FRD2012$shares.se[2]),3)) # expect_equal(0.035,round(as.numeric(model.FRD2012$shares.se[3]),3)) # expect_equal(0.46,round(as.numeric(model.FRD2012$gammas.par[1]),2)) # }) test_that("Example: Dvorak, Fischbacher, and Schmelz (2020)" , { skip_on_cran() data.DFS2020 <- stratEst.data(data = DFS2020, input = c("others.choices")) model.DFS2020 <- stratEst.model(data = data.DFS2020 , strategies = strategies.DFS2020, covariates = c("intercept","conformity.score")) test.coefficients <- stratEst.test(model.DFS2020, par = "coefficients") expect_equal(0.008,round(as.numeric(test.coefficients$p.value[1]),3)) expect_equal(0.007,round(as.numeric(test.coefficients$p.value[2]),3)) check.DFS2020 <- stratEst.check(model.DFS2020, chi.tests = TRUE, bs.samples = 1) expect_equal(0.0855,round(as.numeric(check.DFS2020$chi.global[1,1]),4)) expect_equal(52.2931,round(as.numeric(check.DFS2020$chi.local[1,1]),4)) expect_equal(117.7065,round(as.numeric(check.DFS2020$chi.local[2,1]),4)) })