test_that("MCMC BART", { skip_on_cran() # Generate simulated data n <- 100 p <- 5 X <- matrix(runif(n*p), ncol = p) f_XW <- ( ((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) + ((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) + ((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) + ((0.75 <= X[,1]) & (1 > X[,1])) * (7.5) ) noise_sd <- 1 y <- f_XW + rnorm(n, 0, noise_sd) test_set_pct <- 0.2 n_test <- round(test_set_pct*n) n_train <- n - n_test test_inds <- sort(sample(1:n, n_test, replace = FALSE)) train_inds <- (1:n)[!((1:n) %in% test_inds)] X_test <- X[test_inds,] X_train <- X[train_inds,] y_test <- y[test_inds] y_train <- y[train_inds] # 1 chain, no thinning general_param_list <- list(num_chains = 1, keep_every = 1) expect_no_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, num_gfr = 0, num_burnin = 10, num_mcmc = 10, general_params = general_param_list) ) # 3 chains, no thinning general_param_list <- list(num_chains = 3, keep_every = 1) expect_no_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, num_gfr = 0, num_burnin = 10, num_mcmc = 10, general_params = general_param_list) ) # 1 chain, thinning general_param_list <- list(num_chains = 1, keep_every = 5) expect_no_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, num_gfr = 0, num_burnin = 10, num_mcmc = 10, general_params = general_param_list) ) # 3 chains, thinning general_param_list <- list(num_chains = 3, keep_every = 5) expect_no_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, num_gfr = 0, num_burnin = 10, num_mcmc = 10, general_params = general_param_list) ) # Generate simulated data with a leaf basis n <- 100 p <- 5 p_w <- 2 X <- matrix(runif(n*p), ncol = p) W <- matrix(runif(n*p_w), ncol = p_w) f_XW <- ( ((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5*W[,1]) + ((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5*W[,1]) + ((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5*W[,1]) + ((0.75 <= X[,1]) & (1 > X[,1])) * (7.5*W[,1]) ) noise_sd <- 1 y <- f_XW + rnorm(n, 0, noise_sd) test_set_pct <- 0.2 n_test <- round(test_set_pct*n) n_train <- n - n_test test_inds <- sort(sample(1:n, n_test, replace = FALSE)) train_inds <- (1:n)[!((1:n) %in% test_inds)] X_test <- X[test_inds,] X_train <- X[train_inds,] W_test <- W[test_inds,] W_train <- W[train_inds,] y_test <- y[test_inds] y_train <- y[train_inds] # 3 chains, thinning, leaf regression general_param_list <- list(num_chains = 3, keep_every = 5) mean_forest_param_list <- list(sample_sigma2_leaf = F) expect_no_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, leaf_basis_train = W_train, leaf_basis_test = W_test, num_gfr = 0, num_burnin = 10, num_mcmc = 10, general_params = general_param_list, mean_forest_params = mean_forest_param_list) ) # 3 chains, thinning, leaf regression with a scalar leaf scale general_param_list <- list(num_chains = 3, keep_every = 5) mean_forest_param_list <- list(sample_sigma2_leaf = F, sigma2_leaf_init = 0.5) expect_no_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, leaf_basis_train = W_train, leaf_basis_test = W_test, num_gfr = 0, num_burnin = 10, num_mcmc = 10, general_params = general_param_list, mean_forest_params = mean_forest_param_list) ) # 3 chains, thinning, leaf regression with a scalar leaf scale, random leaf scale general_param_list <- list(num_chains = 3, keep_every = 5) mean_forest_param_list <- list(sample_sigma2_leaf = T, sigma2_leaf_init = 0.5) expect_warning( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, leaf_basis_train = W_train, leaf_basis_test = W_test, num_gfr = 0, num_burnin = 10, num_mcmc = 10, general_params = general_param_list, mean_forest_params = mean_forest_param_list) ) }) test_that("GFR BART", { skip_on_cran() # Generate simulated data n <- 100 p <- 5 X <- matrix(runif(n*p), ncol = p) f_XW <- ( ((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) + ((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) + ((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) + ((0.75 <= X[,1]) & (1 > X[,1])) * (7.5) ) noise_sd <- 1 y <- f_XW + rnorm(n, 0, noise_sd) test_set_pct <- 0.2 n_test <- round(test_set_pct*n) n_train <- n - n_test test_inds <- sort(sample(1:n, n_test, replace = FALSE)) train_inds <- (1:n)[!((1:n) %in% test_inds)] X_test <- X[test_inds,] X_train <- X[train_inds,] y_test <- y[test_inds] y_train <- y[train_inds] # 1 chain, no thinning general_param_list <- list(num_chains = 1, keep_every = 1) expect_no_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, num_gfr = 10, num_burnin = 10, num_mcmc = 10, general_params = general_param_list) ) # 3 chains, no thinning general_param_list <- list(num_chains = 3, keep_every = 1) expect_no_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, num_gfr = 10, num_burnin = 10, num_mcmc = 10, general_params = general_param_list) ) # 1 chain, thinning general_param_list <- list(num_chains = 1, keep_every = 5) expect_no_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, num_gfr = 10, num_burnin = 10, num_mcmc = 10, general_params = general_param_list) ) # 3 chains, thinning general_param_list <- list(num_chains = 3, keep_every = 5) expect_no_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, num_gfr = 10, num_burnin = 10, num_mcmc = 10, general_params = general_param_list) ) # Check for error when more chains than GFR forests general_param_list <- list(num_chains = 11, keep_every = 1) expect_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, num_gfr = 10, num_burnin = 10, num_mcmc = 10, general_params = general_param_list) ) # Check for error when more chains than GFR forests general_param_list <- list(num_chains = 11, keep_every = 5) expect_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, num_gfr = 10, num_burnin = 10, num_mcmc = 10, general_params = general_param_list) ) }) test_that("Warmstart BART", { skip_on_cran() # Generate simulated data n <- 100 p <- 5 X <- matrix(runif(n*p), ncol = p) f_XW <- ( ((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) + ((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) + ((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) + ((0.75 <= X[,1]) & (1 > X[,1])) * (7.5) ) noise_sd <- 1 y <- f_XW + rnorm(n, 0, noise_sd) test_set_pct <- 0.2 n_test <- round(test_set_pct*n) n_train <- n - n_test test_inds <- sort(sample(1:n, n_test, replace = FALSE)) train_inds <- (1:n)[!((1:n) %in% test_inds)] X_test <- X[test_inds,] X_train <- X[train_inds,] y_test <- y[test_inds] y_train <- y[train_inds] # Run a BART model with only GFR general_param_list <- list(num_chains = 1, keep_every = 1) bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, num_gfr = 10, num_burnin = 0, num_mcmc = 0, general_params = general_param_list) # Save to JSON string bart_model_json_string <- saveBARTModelToJsonString(bart_model) # Run a new BART chain from the existing (X)BART model general_param_list <- list(num_chains = 3, keep_every = 5) expect_no_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, num_gfr = 0, num_burnin = 10, num_mcmc = 10, previous_model_json = bart_model_json_string, previous_model_warmstart_sample_num = 1, general_params = general_param_list) ) # Generate simulated data with random effects n <- 100 p <- 5 X <- matrix(runif(n*p), ncol = p) f_XW <- ( ((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) + ((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) + ((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) + ((0.75 <= X[,1]) & (1 > X[,1])) * (7.5) ) rfx_group_ids <- sample(1:2, size = n, replace = T) rfx_basis <- rep(1, n) rfx_coefs <- c(-5, 5) rfx_term <- rfx_coefs[rfx_group_ids] * rfx_basis noise_sd <- 1 y <- f_XW + rfx_term + rnorm(n, 0, noise_sd) test_set_pct <- 0.2 n_test <- round(test_set_pct*n) n_train <- n - n_test test_inds <- sort(sample(1:n, n_test, replace = FALSE)) train_inds <- (1:n)[!((1:n) %in% test_inds)] X_test <- X[test_inds,] X_train <- X[train_inds,] rfx_group_ids_test <- rfx_group_ids[test_inds] rfx_group_ids_train <- rfx_group_ids[train_inds] rfx_basis_test <- rfx_basis[test_inds] rfx_basis_train <- rfx_basis[train_inds] y_test <- y[test_inds] y_train <- y[train_inds] # Run a BART model with only GFR general_param_list <- list(num_chains = 1, keep_every = 1) bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, rfx_group_ids_train = rfx_group_ids_train, rfx_group_ids_test = rfx_group_ids_test, rfx_basis_train = rfx_basis_train, rfx_basis_test = rfx_basis_test, num_gfr = 10, num_burnin = 0, num_mcmc = 0, general_params = general_param_list) # Save to JSON string bart_model_json_string <- saveBARTModelToJsonString(bart_model) # Run a new BART chain from the existing (X)BART model general_param_list <- list(num_chains = 4, keep_every = 5) expect_no_error( bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test, rfx_group_ids_train = rfx_group_ids_train, rfx_group_ids_test = rfx_group_ids_test, rfx_basis_train = rfx_basis_train, rfx_basis_test = rfx_basis_test, num_gfr = 0, num_burnin = 10, num_mcmc = 10, previous_model_json = bart_model_json_string, previous_model_warmstart_sample_num = 1, general_params = general_param_list) ) })