require("stabledist") pPareto <- stabledist:::pPareto source(system.file("test-tools-1.R", package = "Matrix"), keep.source=interactive()) #-> identical3(), showProc.time(),... (doExtras <- stabledist:::doExtras()) options(pstable.debug = FALSE) options(pstable.debug = TRUE)# want to see when uniroot() is called stopifnot(all.equal(pstable(0.3, 0.75, -.5, tol= 1e-14), 0.6688726496, tol = 1e-8)) ## was 0.66887227658457, tol = 1e-10)) pstable(-4.5, alpha = 1, beta = 0.01)## gave integration error (now uniroot..) ## a "outer vectorized" version: pstabALL <- function(x, alpha, beta, ...) sapply(alpha, function(alph) sapply(beta, function(bet) pstable(x, alph, bet, ...))) alph.s <- (1:32)/16 # in (0, 2] beta.s <- (-16:16)/16 # in [-1, 1] stopifnot(pstabALL( Inf, alph.s, beta.s) == 1, pstabALL(-Inf, alph.s, beta.s, log.p=TRUE) == -Inf, pstabALL( 0, alph.s, beta = 0) == 0.5, TRUE) pdf("pstab-ex.pdf") ##---- log-scale ------------- r <- curve(pstable(x, alpha=1.8, beta=.9, lower.tail=FALSE, log.p=TRUE), 5, 150, n=500, log="x",type="b", cex=.5) curve(pPareto(x, alpha=1.8, beta=.9, lower.tail=FALSE, log.p=TRUE), add=TRUE, col=2) ##--> clearly potential for improvement! ## the less extreme part - of that: r <- curve(pstable(x, alpha=1.8, beta=.9, lower.tail=FALSE, log.p=TRUE), 1, 50, n=500, log="x") curve(pPareto(x, alpha=1.8, beta=.9, lower.tail=FALSE, log.p=TRUE), add=TRUE, col=2) ## Check that pstable() is the integral of dstable() --- using simple Simpson's rule ## in it's composite form: ## \int_a^b f(x) dx\approx \frac{h}{3} ## \bigg[ f(x_0) + 2 \sum_{j=1}^{n/2-1}f(x_{2j}) + ## + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + ## + f(x_n) \bigg], intSimps <- function(fx, h) { stopifnot((n <- length(fx)) %% 2 == 0, n >= 4, length(h) == 1, h > 0) n2 <- n %/% 2 j2 <- 2L * seq_len(n2-1) j4 <- 2L * seq_len(n2) - 1L h/3 * sum(fx[1], 2* fx[j2], 4* fx[j4], fx[n]) } chk.pd.stable <- function(alpha, beta, xmin=NA, xmax=NA, n = 256, do.plot=TRUE, comp.tol = 1e-13, eq.tol = 1e-3) { stopifnot(n >= 20) if(is.na(xmin)) xmin <- qstable(0.01, alpha, beta) if(is.na(xmax)) xmax <- qstable(0.99, alpha, beta) dx <- ceiling(1024*grDevices::extendrange(r = c(xmin, xmax), f = 0.01))/1024 h <- diff(dx)/n x <- seq(dx[1], dx[2], by = h) fx <- dstable(x, alpha=alpha, beta=beta, tol= comp.tol) Fx <- pstable(x, alpha=alpha, beta=beta, tol=2*comp.tol) i.ev <- (i <- seq_along(x))[i %% 2 == 0 & i >= max(n/10, 16)] ## integrate from x[1] up to x[i] (where i is even); ## the exact value will be F(x[i]) - F(x[1]) == Fx[i] - Fx[1] Fx. <- vapply(lapply(i.ev, seq_len), function(ii) intSimps(fx[ii], h), 0) a.eq <- all.equal(Fx., Fx[i.ev] - Fx[1], tol = eq.tol) if(do.plot) { ## Show the fit plot(x, Fx - Fx[1], type = "l") lines(x[i.ev], Fx., col=adjustcolor("red", 0.5), lwd=3) op <- par(ask=TRUE) ; on.exit(par(op)) ## show the "residual", i.e., the relative error plot(x[i.ev], 1- Fx./(Fx[i.ev] - Fx[1]), type = "l", xlim = range(x)) abline(h=0, lty=3, lwd = .6) } if(!isTRUE(a.eq)) stop(a.eq) invisible(list(x=x, f=fx, F=Fx, i. = i.ev, F.appr. = Fx.)) } op <- par(mfrow=2:1, mar = .1+c(3,3,1,1), mgp=c(1.5, 0.6,0)) c1 <- chk.pd.stable(.75, -.5, -1, 1.5, eq.tol = .006) c2 <- chk.pd.stable(.95, +0.6, -1, 1.5, eq.tol = .006)# with >= 50 warnings ## here are the "values" with(c1, all.equal(F.appr., F[i.] - F[1], tol = 0)) # (.0041290 on 64-Lnx) with(c2, all.equal(F.appr., F[i.] - F[1], tol = 0)) # (.0049307 on 64-Lnx) showProc.time() # c3 <- chk.pd.stable(.95, +0.9, -3, 15) # >= 50 warnings curve(dstable(x, .999, -0.9), -20, 5, log="y") curve(pstable(x, .999, -0.9), -20, 5, log="y")#-> using uniroot c4 <- chk.pd.stable(.999, -0.9, -20, 5) showProc.time() # ## alpha == 1 , small beta ---- now perfect curve(pstable(x, alpha=1, beta= .01), -6, 8, ylim=0:1) abline(h=0:1, v=0, lty=3, col="gray30") n <- length(x <- seq(-6,8, by = 1/16)) px <- pstable(x, alpha=1, beta= .01) ## now take approximation derivative by difference ratio: x. <- (x[-n]+x[-1])/2 plot (x., diff(px)*16, type="l") ## now check convexity/concavity : f2 <- diff(diff(px)) stopifnot(f2[x[-c(1,n)] < 0] > 0, f2[x[-c(1,n)] > 0] < 0) ## and compare with dstable() ... which actually shows dstable() problem: fx. <- dstable(x., alpha=1, beta=.01) lines(x., fx., col = 2, lwd=3, lty="5111") if(dev.interactive(orNone=TRUE)) { curve(dstable(x, 1., 0.99), -6, 50, log="y")# "uneven" (x < 0); 50 warnings curve(dstable(x, 1.001, 0.95), -10, 30, log="y")# much better } showProc.time() # if(doExtras) { c5 <- chk.pd.stable(1., 0.99, -6, 50)# -> uniroot c6 <- chk.pd.stable(1.001, 0.95, -10, 30)# -> uniroot; 2nd plot *clearly* shows problem with(c5, all.equal(F.appr., F[i.] - F[1], tol = 0)) # .00058 on 64-Lnx with(c6, all.equal(F.appr., F[i.] - F[1], tol = 0)) # 2.611e-5 on 64-Lnx ## right tail: try(## FIXME: c1.0 <- chk.pd.stable(1., 0.8, -6, 500)# uniroot; rel.difference = .030 ) ## show it more clearly curve(pstable(x, alpha=1, beta=0.5), 20, 800, log="x", ylim=c(.97, 1)) curve(pPareto(x, alpha=1, beta=0.5), add=TRUE, col=2, lty=2) abline(h=1, lty=3,col="gray") # and similarly (alpha ~= 1, instead of == 1): curve(pstable(x, alpha=1.001, beta=0.5), 20, 800, log="x", ylim=c(.97, 1)) curve(pPareto(x, alpha=1.001, beta=0.5), add=TRUE, col=2, lty=2) abline(h=1, lty=3,col="gray") ## zoom curve(pstable(x, alpha=1.001, beta=0.5), 100, 200, log="x") curve(pPareto(x, alpha=1.001, beta=0.5), add=TRUE, col=2, lty=2) ## but alpha = 1 is only somewhat better as approximation: curve(pstable(x, alpha=1 , beta=0.5), add=TRUE, col=3, lwd=3, lty="5131") showProc.time() # } c7 <- chk.pd.stable(1.2, -0.2, -40, 30) c8 <- chk.pd.stable(1.5, -0.999, -40, 30)# two warnings showProc.time() # ### Newly found -- Marius Hofert, 18.Sept. (via qstable): stopifnot(all.equal(qstable(0.6, alpha = 0.5, beta = 1, tol=1e-15, integ.tol=1e-15), 2.636426573120147)) ##--> which can be traced to the first of stopifnot(pstable(q= -1.1, alpha=0.5, beta=1) == 0, pstable(q= -2.1, alpha=0.6, beta=1) == 0) ## Found by Tobias Hudec, 2 May 2015: stopifnot( all.equal(1.5, qstable(p=0.5, alpha=1.5, beta=0, gamma=2, delta = 1.5)), all.equal(1.5, qstable(p=0.5, alpha=0.6, beta=0, gamma=0.2, delta = 1.5)) ) ## Stable(alpha = 1/2, beta = 1, gamma, delta, pm = 1) <===> Levy(delta, gamma) source(system.file("xtraR", "Levy.R", package = "stabledist"), keep.source=interactive()) ##-> dLevy(x, mu, c, log) and ##-> pLevy(x, mu, c, log.p, lower.tail) set.seed(101) show.Acc <- (interactive() && require("Rmpfr")) if(show.Acc) { ## want to see accuracies, do not stop "quickly" format.relErr <- function(tt, cc) format(as.numeric(relErr(tt, cc)), digits = 4, width = 8) } ## FIXME: Look why pstable() is so much less accurate than dstable() ## even though the integration in dstable() is more delicate in general pTOL <- 1e-6 # typically see relErr of 5e-7 dTOL <- 1e-14 # typically see relErr of 1.3...3.9 e-15 showProc.time() ## Note that dstable() is more costly than pstable() for(ii in 1:(if(doExtras) 32 else 8)) { Z <- rnorm(2) mu <- sign(Z[1])*exp(Z[1]) sc <- exp(Z[2]) x <- seq(mu, mu+ sc* 100*rchisq(1, df=3), length.out= if(doExtras) 512 else 32) ## dLevy() and pLevy() using only pnorm() are "mpfr-aware": x. <- if(show.Acc) mpfr(x, 256) else x pL <- pLevy(x., mu, sc) pS <- pstable(x, alpha=1/2, beta=1, gamma=sc, delta=mu, pm = 1) dL <- dLevy(x., mu, sc) dS <- dstable(x, alpha=1/2, beta=1, gamma=sc, delta=mu, pm = 1) if(show.Acc) { cat("p: ", format.relErr(pL, pS), "\t") cat("d: ", format.relErr(dL, dS), "\n") } else { cat(ii %% 10) } stopifnot(all.equal(pL, pS, tol = pTOL), all.equal(dL, dS, tol = dTOL)) }; cat("\n") showProc.time()## ~ 75 sec (doExtras=TRUE) on lynne (2012-09)