# SPMODEL PACKAGE NEEDS TO BE INSTALLED VIA DEVTOOLS::INSTALL() BEFORE RUNNING TESTS IF THOSE TESTS HAVE PARALLELIZATION test_that("generics work splm point data", { load(file = system.file("extdata", "exdata.rda", package = "spmodel")) load(file = system.file("extdata", "newexdata.rda", package = "spmodel")) spmod1 <- splm(y ~ x, exdata, spcov_type = "exponential", xcoord = xcoord, ycoord = ycoord, estmethod = "reml") spmod2 <- splm(y ~ x, exdata, spcov_type = "none", xcoord = xcoord, ycoord = ycoord, estmethod = "reml") # AIC expect_vector(AIC(spmod1)) expect_s3_class(AIC(spmod1, spmod2), "data.frame") # turn reml fixed effects warning off # anova expect_s3_class(anova(spmod1), "data.frame") expect_s3_class(anova(spmod1), "anova.splm") expect_s3_class(tidy(anova(spmod1)), "data.frame") expect_s3_class(anova(spmod1, spmod2), "data.frame") expect_s3_class(anova(spmod1, spmod2), "anova.splm") expect_s3_class(tidy(anova(spmod1, spmod2)), "data.frame") # augment expect_s3_class(augment(spmod1), "data.frame") expect_s3_class(augment(spmod1, newdata = newexdata), "data.frame") # coef expect_vector(coef(spmod1)) expect_s3_class(coef(spmod1, type = "spcov"), "exponential") expect_null(coef(spmod1, type = "randcov")) expect_vector(coefficients(spmod1)) expect_s3_class(coefficients(spmod1, type = "spcov"), "exponential") expect_null(coefficients(spmod1, type = "randcov")) # confint expect_true(inherits(confint(spmod1), "matrix")) expect_true(inherits(confint(spmod1, parm = c("x"), level = 0.9), "matrix")) # cooks.distance expect_vector(cooks.distance(spmod1)) # covmatrix expect_true(inherits(covmatrix(spmod1), "matrix")) expect_true(inherits(covmatrix(spmod1, newexdata), "matrix")) # deviance expect_vector(deviance(spmod1)) # esv expect_s3_class(esv(y ~ x, exdata, xcoord = xcoord, ycoord = ycoord), "data.frame") # fitted expect_vector(fitted(spmod1)) expect_type(fitted(spmod1, type = "spcov"), "list") expect_null(fitted(spmod1, type = "randcov")) expect_vector(fitted.values(spmod1)) expect_type(fitted.values(spmod1, type = "spcov"), "list") expect_null(fitted.values(spmod1, type = "randcov")) # formula expect_type(formula(spmod1), "language") # getCall expect_type(getCall(spmod1), "language") # glance expect_s3_class(glance(spmod1), "data.frame") # glances expect_s3_class(glances(spmod1), "data.frame") expect_s3_class(glances(spmod1, spmod2), "data.frame") # hatvalues expect_vector(hatvalues(spmod1)) # influence expect_s3_class(influence(spmod1), "data.frame") # labels expect_type(labels(spmod1), "character") # logLik expect_vector(logLik(spmod1)) # loocv expect_vector(loocv(spmod1)) expect_type(loocv(spmod1, cv_predict = TRUE, se.fit = TRUE, local = TRUE), "list") # model.frame expect_s3_class(model.frame(spmod1), "data.frame") # model.matrix expect_true(inherits(model.matrix(spmod1), "matrix")) # model.offset expect_null(model.offset(model.frame(spmod1))) # model.response expect_vector(model.response(model.frame(spmod1))) # plot expect_invisible(plot(spmod1, which = 1)) expect_invisible(plot(spmod1, which = 2)) expect_invisible(plot(spmod1, which = 7)) # predict expect_vector(predict(spmod1, newdata = newexdata)) expect_type(predict(spmod1, newdata = newexdata, interval = "prediction", se.fit = TRUE, local = TRUE), "list") expect_true(inherits(predict(spmod1, newdata = newexdata, interval = "confidence", level = 0.9), "matrix")) # print expect_output(print(spmod1)) expect_output(print(summary(spmod1))) expect_output(print(anova(spmod1))) # pseudoR2 expect_vector(pseudoR2(spmod1)) # residuals expect_vector(residuals(spmod1)) expect_vector(residuals(spmod1, type = "pearson")) expect_vector(residuals(spmod1, type = "standardized")) expect_vector(resid(spmod1)) expect_vector(resid(spmod1, type = "pearson")) expect_vector(resid(spmod1, type = "standardized")) expect_vector(rstandard(spmod1)) # summary expect_type(summary(spmod1), "list") # terms expect_type(terms(spmod1), "language") # tidy expect_s3_class(tidy(spmod1), "data.frame") # update expect_s3_class(update(spmod2), "splm") # varcomp expect_s3_class(varcomp(spmod1), "data.frame") # vcov expect_true(inherits(vcov(spmod1), "matrix")) }) test_that("generics work splm point data with missing", { load(file = system.file("extdata", "exdata_M.rda", package = "spmodel")) load(file = system.file("extdata", "newexdata.rda", package = "spmodel")) spmod1 <- splm(y ~ x, exdata_M, spcov_type = "exponential", xcoord = xcoord, ycoord = ycoord, estmethod = "reml") spmod2 <- splm(y ~ x, exdata_M, spcov_type = "none", xcoord = xcoord, ycoord = ycoord, estmethod = "reml") # AIC expect_vector(AIC(spmod1)) expect_s3_class(AIC(spmod1, spmod2), "data.frame") # turn reml fixed effects warning off # anova expect_s3_class(anova(spmod1), "data.frame") expect_s3_class(anova(spmod1), "anova.splm") expect_s3_class(tidy(anova(spmod1)), "data.frame") expect_s3_class(anova(spmod1, spmod2), "data.frame") expect_s3_class(anova(spmod1, spmod2), "anova.splm") expect_s3_class(tidy(anova(spmod1, spmod2)), "data.frame") # augment expect_s3_class(augment(spmod1), "data.frame") expect_s3_class(augment(spmod1, newdata = spmod1$newdata), "data.frame") # coef expect_vector(coef(spmod1)) expect_s3_class(coef(spmod1, type = "spcov"), "exponential") expect_null(coef(spmod1, type = "randcov")) expect_vector(coefficients(spmod1)) expect_s3_class(coefficients(spmod1, type = "spcov"), "exponential") expect_null(coefficients(spmod1, type = "randcov")) # confint expect_true(inherits(confint(spmod1), "matrix")) expect_true(inherits(confint(spmod1, parm = c("x"), level = 0.9), "matrix")) # cooks.distance expect_vector(cooks.distance(spmod1)) # covmatrix expect_true(inherits(covmatrix(spmod1), "matrix")) expect_true(inherits(covmatrix(spmod1, newdata = spmod1$newdata), "matrix")) # deviance expect_vector(deviance(spmod1)) # esv expect_s3_class(esv(y ~ x, exdata_M, xcoord = xcoord, ycoord = ycoord), "data.frame") # fitted expect_vector(fitted(spmod1)) expect_type(fitted(spmod1, type = "spcov"), "list") expect_null(fitted(spmod1, type = "randcov")) expect_vector(fitted.values(spmod1)) expect_type(fitted.values(spmod1, type = "spcov"), "list") expect_null(fitted.values(spmod1, type = "randcov")) # formula expect_type(formula(spmod1), "language") # getCall expect_type(getCall(spmod1), "language") # glance expect_s3_class(glance(spmod1), "data.frame") # glances expect_s3_class(glances(spmod1), "data.frame") expect_s3_class(glances(spmod1, spmod2), "data.frame") # hatvalues expect_vector(hatvalues(spmod1)) # influence expect_s3_class(influence(spmod1), "data.frame") # labels expect_type(labels(spmod1), "character") # logLik expect_vector(logLik(spmod1)) # loocv expect_vector(loocv(spmod1)) expect_type(loocv(spmod1, cv_predict = TRUE, se.fit = TRUE, local = TRUE), "list") # model.frame expect_s3_class(model.frame(spmod1), "data.frame") # model.matrix expect_true(inherits(model.matrix(spmod1), "matrix")) # model.offset expect_null(model.offset(model.frame(spmod1))) # model.response expect_vector(model.response(model.frame(spmod1))) # plot expect_invisible(plot(spmod1, which = 1)) expect_invisible(plot(spmod1, which = 2)) expect_invisible(plot(spmod1, which = 7)) # predict expect_vector(predict(spmod1, newdata = newexdata)) expect_type(predict(spmod1, newdata = newexdata, interval = "prediction", se.fit = TRUE, local = TRUE), "list") expect_true(inherits(predict(spmod1, newdata = newexdata, interval = "confidence", level = 0.9), "matrix")) # print expect_output(print(spmod1)) expect_output(print(summary(spmod1))) expect_output(print(anova(spmod1))) # pseudoR2 expect_vector(pseudoR2(spmod1)) # residuals expect_vector(residuals(spmod1)) expect_vector(residuals(spmod1, type = "pearson")) expect_vector(residuals(spmod1, type = "standardized")) expect_vector(resid(spmod1)) expect_vector(resid(spmod1, type = "pearson")) expect_vector(resid(spmod1, type = "standardized")) expect_vector(rstandard(spmod1)) # summary expect_type(summary(spmod1), "list") # terms expect_type(terms(spmod1), "language") # tidy expect_s3_class(tidy(spmod1), "data.frame") # update expect_s3_class(update(spmod2), "splm") # varcomp expect_s3_class(varcomp(spmod1), "data.frame") # vcov expect_true(inherits(vcov(spmod1), "matrix")) }) test_that("generics work splm polygon data with missing", { load(file = system.file("extdata", "exdata_Mpoly.rda", package = "spmodel")) spmod1 <- splm(y ~ x, exdata_Mpoly, spcov_type = "exponential", xcoord = xcoord, ycoord = ycoord, estmethod = "reml") spmod2 <- splm(y ~ x, exdata_Mpoly, spcov_type = "none", xcoord = xcoord, ycoord = ycoord, estmethod = "reml") # AIC expect_vector(AIC(spmod1)) expect_s3_class(AIC(spmod1, spmod2), "data.frame") # turn reml fixed effects warning off # anova expect_s3_class(anova(spmod1), "data.frame") expect_s3_class(anova(spmod1), "anova.splm") expect_s3_class(tidy(anova(spmod1)), "data.frame") expect_s3_class(anova(spmod1, spmod2), "data.frame") expect_s3_class(anova(spmod1, spmod2), "anova.splm") expect_s3_class(tidy(anova(spmod1, spmod2)), "data.frame") # augment expect_s3_class(augment(spmod1), "data.frame") expect_s3_class(augment(spmod1, newdata = spmod1$newdata), "data.frame") # coef expect_vector(coef(spmod1)) expect_s3_class(coef(spmod1, type = "spcov"), "exponential") expect_null(coef(spmod1, type = "randcov")) expect_vector(coefficients(spmod1)) expect_s3_class(coefficients(spmod1, type = "spcov"), "exponential") expect_null(coefficients(spmod1, type = "randcov")) # confint expect_true(inherits(confint(spmod1), "matrix")) expect_true(inherits(confint(spmod1, parm = c("x"), level = 0.9), "matrix")) # cooks.distance expect_vector(cooks.distance(spmod1)) # covmatrix expect_true(inherits(covmatrix(spmod1), "matrix")) expect_true(inherits(covmatrix(spmod1, newdata = spmod1$newdata), "matrix")) # deviance expect_vector(deviance(spmod1)) # esv expect_s3_class(esv(y ~ x, exdata_Mpoly, xcoord = xcoord, ycoord = ycoord), "data.frame") # fitted expect_vector(fitted(spmod1)) expect_type(fitted(spmod1, type = "spcov"), "list") expect_null(fitted(spmod1, type = "randcov")) expect_vector(fitted.values(spmod1)) expect_type(fitted.values(spmod1, type = "spcov"), "list") expect_null(fitted.values(spmod1, type = "randcov")) # formula expect_type(formula(spmod1), "language") # getCall expect_type(getCall(spmod1), "language") # glance expect_s3_class(glance(spmod1), "data.frame") # glances expect_s3_class(glances(spmod1), "data.frame") expect_s3_class(glances(spmod1, spmod2), "data.frame") # hatvalues expect_vector(hatvalues(spmod1)) # influence expect_s3_class(influence(spmod1), "data.frame") # labels expect_type(labels(spmod1), "character") # logLik expect_vector(logLik(spmod1)) # loocv expect_vector(loocv(spmod1)) expect_type(loocv(spmod1, cv_predict = TRUE, se.fit = TRUE, local = TRUE), "list") # model.frame expect_s3_class(model.frame(spmod1), "data.frame") # model.matrix expect_true(inherits(model.matrix(spmod1), "matrix")) # model.offset expect_null(model.offset(model.frame(spmod1))) # model.response expect_vector(model.response(model.frame(spmod1))) # plot expect_invisible(plot(spmod1, which = 1)) expect_invisible(plot(spmod1, which = 2)) expect_invisible(plot(spmod1, which = 7)) # predict expect_vector(predict(spmod1)) expect_type(predict(spmod1, interval = "prediction", se.fit = TRUE, local = TRUE), "list") expect_true(inherits(predict(spmod1, interval = "confidence", level = 0.9), "matrix")) # print expect_output(print(spmod1)) expect_output(print(summary(spmod1))) expect_output(print(anova(spmod1))) # pseudoR2 expect_vector(pseudoR2(spmod1)) # residuals expect_vector(residuals(spmod1)) expect_vector(residuals(spmod1, type = "pearson")) expect_vector(residuals(spmod1, type = "standardized")) expect_vector(resid(spmod1)) expect_vector(resid(spmod1, type = "pearson")) expect_vector(resid(spmod1, type = "standardized")) expect_vector(rstandard(spmod1)) # summary expect_type(summary(spmod1), "list") # terms expect_type(terms(spmod1), "language") # tidy expect_s3_class(tidy(spmod1), "data.frame") # update expect_s3_class(update(spmod2), "splm") # varcomp expect_s3_class(varcomp(spmod1), "data.frame") # vcov expect_true(inherits(vcov(spmod1), "matrix")) })