R Under development (unstable) (2024-11-18 r87347 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > #' > #' Header for all (concatenated) test files > #' > #' Require spatstat.model > #' Obtain environment variable controlling tests. > #' > #' $Revision: 1.5 $ $Date: 2020/04/30 05:31:37 $ > > require(spatstat.model) Loading required package: spatstat.model Loading required package: spatstat.data Loading required package: spatstat.univar spatstat.univar 3.1-1 Loading required package: spatstat.geom spatstat.geom 3.3-4 Loading required package: spatstat.random spatstat.random 3.3-2 Loading required package: spatstat.explore Loading required package: nlme spatstat.explore 3.3-3 Loading required package: rpart spatstat.model 3.3-3 > FULLTEST <- (nchar(Sys.getenv("SPATSTAT_TEST", unset="")) > 0) > ALWAYS <- TRUE > cat(paste("--------- Executing", + if(FULLTEST) "** ALL **" else "**RESTRICTED** subset of", + "test code -----------\n")) --------- Executing **RESTRICTED** subset of test code ----------- > # > # tests/undoc.R > # > # $Revision: 1.16 $ $Date: 2020/11/02 07:06:49 $ > # > # Test undocumented hacks, experimental code, etc > > > local({ + if(FULLTEST) { + ## cases of 'pickoption' + aliases <- c(Lenin="Ulyanov", Stalin="Djugashvili", Trotsky="Bronstein") + surname <- "Trot" + pickoption("leader", surname, aliases) + pickoption("leader", surname, aliases, exact=TRUE, die=FALSE) + } + if(ALWAYS) { + ## pixellate.ppp accepts a data frame of weights + pixellate(cells, weights=data.frame(a=1:42, b=42:1)) + ## test parts of 'rmhsnoop' that don't require interaction with user + rmhSnoopEnv(cells, Window(cells), 0.1) + } + if(FULLTEST) { + ## Berman-Turner frame + A <- bt.frame(quadscheme(cells), ~x, Strauss(0.07), rbord=0.07) + print(A) + ## digestCovariates + D <- distfun(cells) + Z <- distmap(cells) + U <- dirichlet(cells) + stopifnot(is.scov(D)) + stopifnot(is.scov(Z)) + stopifnot(is.scov(U)) + stopifnot(is.scov("x")) + dg <- digestCovariates(D=D,Z=Z,U=U,"x",list(A="x", B=D)) + ## + a <- getfields(dg, c("A", "D", "niets"), fatal=FALSE) + ## util.R + gg <- pointgrid(owin(), 7) + checkbigmatrix(1000000L, 1000000L, FALSE, TRUE) + spatstatDiagnostic("whatever") + M <- list(list(a=2, b=FALSE), + list(a=2, b=TRUE)) + stopifnot(!allElementsIdentical(M)) + stopifnot(allElementsIdentical(M, "a")) + ## + A <- Strauss(0.1) + A <- reincarnate.interact(A) + ## + ## special lists + B <- solist(a=cells, b=redwood, c=japanesepines) + BB <- as.ppplist(B) + BL <- as.layered(B) + DB <- as.imlist(lapply(B, density)) + is.solist(B) + is.ppplist(B) + is.imlist(DB) + ## case of density.ppplist + DEB <- density(BB, se=TRUE) + } + + if(ALWAYS) { + ## fft + z <- matrix(1:16, 4, 4) + a <- fft2D(z, west=FALSE) + if(fftwAvailable()) + b <- fft2D(z, west=TRUE) + } + + if(ALWAYS) { + ## experimental interactions + pot <- function(d, par) { d <= 0.1 } + A <- Saturated(pot) + print(A) + A <- update(A, name="something") + ppm(amacrine ~ x, A, rbord=0.1) + } + + if(ALWAYS) { # platform dependent + #' version-checking + now <- Sys.Date() + versioncurrency.spatstat(now + 80, FALSE) + versioncurrency.spatstat(now + 140, FALSE) + versioncurrency.spatstat(now + 400, FALSE) + versioncurrency.spatstat(now + 1000) + } + + if(FULLTEST) { + #' general Ord interaction + gradual <- function(d, pars) { + y <- pmax(0, 0.005 - d)/0.005 + if(is.matrix(d)) y <- matrix(y, nrow(d), ncol(d)) + return(y) + } + B <- Ord(gradual, "gradual Ord process") + } + }) Saturated pairwise interaction family Interaction:Saturated process with user-defined potential Potential function: function (d, par) { d <= 0.1 } > > > ## > ## tests/updateppm.R > ## > ## Check validity of update.ppm > ## > ## $Revision: 1.8 $ $Date: 2022/10/23 01:19:19 $ > > local({ + if(ALWAYS) { + require(spatstat.utils) + h <- function(m1, m2) { + mc <- short.deparse(sys.call()) + cat(paste(mc, "\t... ")) + m1name <- short.deparse(substitute(m1)) + m2name <- short.deparse(substitute(m2)) + if(!identical(names(coef(m1)), names(coef(m2)))) + stop(paste("Differing results for", m1name, "and", m2name, + "in updateppm.R"), + call.=FALSE) + cat("OK\n") + } + + X <- redwood[c(TRUE,FALSE)] + Y <- redwood[c(FALSE,TRUE)] + fit0f <- ppm(X ~ 1, nd=8) + fit0p <- ppm(X, ~1, nd=8) + fitxf <- ppm(X ~ x, nd=8) + fitxp <- ppm(X, ~x, nd=8) + + cat("Basic consistency ...\n") + h(fit0f, fit0p) + h(fitxf, fitxp) + + cat("\nTest correct handling of model formulas ...\n") + h(update(fitxf, Y), fitxf) + h(update(fitxf, Q=Y), fitxf) + h(update(fitxf, Y~x), fitxf) + h(update(fitxf, Q=Y~x), fitxf) + h(update(fitxf, ~x), fitxf) + } + + if(FULLTEST) { + h(update(fitxf, Y~1), fit0f) + h(update(fitxf, ~1), fit0f) + h(update(fit0f, Y~x), fitxf) + h(update(fit0f, ~x), fitxf) + + h(update(fitxp, Y), fitxp) + h(update(fitxp, Q=Y), fitxp) + h(update(fitxp, Y~x), fitxp) + h(update(fitxp, Q=Y~x), fitxp) + h(update(fitxp, ~x), fitxp) + + h(update(fitxp, Y~1), fit0p) + h(update(fitxp, ~1), fit0p) + h(update(fit0p, Y~x), fitxp) + h(update(fit0p, ~x), fitxp) + } + + if(ALWAYS) { + cat("\nTest scope handling for left hand side ...\n") + X <- Y + h(update(fitxf), fitxf) + } + + if(ALWAYS) { + cat("\nTest scope handling for right hand side ...\n") + Z <- distmap(X) + fitZf <- ppm(X ~ Z) + fitZp <- ppm(X, ~ Z) + h(update(fitxf, X ~ Z), fitZf) + } + if(FULLTEST) { + h(update(fitxp, X ~ Z), fitZp) + h(update(fitxf, . ~ Z), fitZf) + h(update(fitZf, . ~ x), fitxf) + h(update(fitZf, . ~ . - Z), fit0f) + h(update(fitxp, . ~ Z), fitZp) + h(update(fitZp, . ~ . - Z), fit0p) + h(update(fit0p, . ~ . + Z), fitZp) + h(update(fitZf, . ~ . ), fitZf) + h(update(fitZp, . ~ . ), fitZp) + } + if(ALWAYS) { + cat("\nTest use of internal data ...\n") + h(update(fitZf, ~ x, use.internal=TRUE), fitxf) + fitsin <- update(fitZf, X~sin(Z)) + h(update(fitZf, ~ sin(Z), use.internal=TRUE), fitsin) + } + if(FULLTEST) { + cat("\nTest step() ... ") + fut <- ppm(X ~ Z + x + y, nd=8) + fut0 <- step(fut, trace=0) + cat("OK\n") + } + + }) Loading required package: spatstat.utils Basic consistency ... h(fit0f, fit0p) ... OK h(fitxf, fitxp) ... OK Test correct handling of model formulas ... h(update(fitxf, Y), fitxf) ... OK h(update(fitxf, Q = Y), fitxf) ... OK h(update(fitxf, Y ~ x), fitxf) ... OK h(update(fitxf, Q = Y ~ x), fitxf) ... OK h(update(fitxf, ~x), fitxf) ... OK Test scope handling for left hand side ... h(update(fitxf), fitxf) ... OK Test scope handling for right hand side ... h(update(fitxf, X ~ Z), fitZf) ... OK Test use of internal data ... h(update(fitZf, ~x, use.internal = TRUE), fitxf) ... OK h(update(fitZf, ~sin(Z), use.internal = TRUE), fitsin) ... OK > # > # tests/vcovppm.R > # > # Check validity of vcov.ppm algorithms > # > # Thanks to Ege Rubak > # > # $Revision: 1.12 $ $Date: 2020/05/02 01:32:58 $ > # > > local({ + + set.seed(42) + X <- rStrauss(200, .5, .05) + model <- ppm(X, inter = Strauss(.05)) + + if(ALWAYS) { + b <- vcov(model, generic = TRUE, algorithm = "basic") + v <- vcov(model, generic = TRUE, algorithm = "vector") + vc <- vcov(model, generic = TRUE, algorithm = "vectorclip") + vn <- vcov(model, generic = FALSE) + + disagree <- function(x, y, tol=1e-7) { max(abs(x-y)) > tol } + asymmetric <- function(x) { disagree(x, t(x)) } + + if(asymmetric(b)) + stop("Non-symmetric matrix produced by vcov.ppm 'basic' algorithm") + if(asymmetric(v)) + stop("Non-symmetric matrix produced by vcov.ppm 'vector' algorithm") + if(asymmetric(vc)) + stop("Non-symmetric matrix produced by vcov.ppm 'vectorclip' algorithm") + if(asymmetric(vn)) + stop("Non-symmetric matrix produced by vcov.ppm Strauss algorithm") + + if(disagree(v, b)) + stop("Disagreement between vcov.ppm algorithms 'vector' and 'basic' ") + if(disagree(v, vc)) + stop("Disagreement between vcov.ppm algorithms 'vector' and 'vectorclip' ") + if(disagree(vn, vc)) + stop("Disagreement between vcov.ppm generic and Strauss algorithms") + } + + if(ALWAYS) { # C code + ## Geyer code + xx <- c(0.7375956, 0.6851697, 0.6399788, 0.6188382) + yy <- c(0.5816040, 0.6456319, 0.5150633, 0.6191592) + Y <- ppp(xx, yy, window=square(1)) + modelY <- ppm(Y ~1, Geyer(0.1, 1)) + + b <- vcov(modelY, generic = TRUE, algorithm = "basic") + v <- vcov(modelY, generic = TRUE, algorithm = "vector") + vc <- vcov(modelY, generic = TRUE, algorithm = "vectorclip") + + if(asymmetric(b)) + stop("Non-symmetric matrix produced by vcov.ppm 'basic' algorithm for Geyer model") + if(asymmetric(v)) + stop("Non-symmetric matrix produced by vcov.ppm 'vector' algorithm for Geyer model") + if(asymmetric(vc)) + stop("Non-symmetric matrix produced by vcov.ppm 'vectorclip' algorithm for Geyer model") + + if(disagree(v, b)) + stop("Disagreement between vcov.ppm algorithms 'vector' and 'basic' for Geyer model") + if(disagree(v, vc)) + stop("Disagreement between vcov.ppm algorithms 'vector' and 'vectorclip' for Geyer model") + } + + if(ALWAYS) { # C code + ## tests of 'deltasuffstat' code + ## Handling of offset terms + modelH <- ppm(cells ~x, Hardcore(0.05)) + a <- vcov(modelH, generic=TRUE) ## may fall over + b <- vcov(modelH, generic=FALSE) + if(disagree(a, b)) + stop("Disagreement between vcov.ppm algorithms for Hardcore model") + + ## Correctness of pairwise.family$delta2 + modelZ <- ppm(amacrine ~1, MultiStrauss(radii=matrix(0.1, 2, 2))) + b <- vcov(modelZ, generic=FALSE) + g <- vcov(modelZ, generic=TRUE) + if(disagree(b, g)) + stop("Disagreement between vcov.ppm algorithms for MultiStrauss model") + + ## Test that 'deltasuffstat' works for Hybrids + modelHyb <- ppm(japanesepines ~ 1, Hybrid(Strauss(0.05), Strauss(0.1))) + vHyb <- vcov(modelHyb) + } + + if(FULLTEST) { + ## Code blocks for other choices of 'what' + model <- ppm(X ~ 1, Strauss(.05)) + cG <- vcov(model, what="corr") + cP <- vcov(update(model, Poisson()), what="corr") + ## outdated usage + cX <- vcov(model, A1dummy=TRUE) + + ## Model with zero-length coefficient vector + lam <- intensity(X) + f <- function(x,y) { rep(lam, length(x)) } + model0 <- ppm(X ~ offset(log(f)) - 1) + dd <- vcov(model0) + cc <- vcov(model0, what="corr") + + ## Model with NA coefficients + fit <- ppm(X ~ log(f)) + vcov(fit) + fitE <- emend(fit, trace=TRUE) + + ## Other weird stuff + su <- suffloc(ppm(X ~ x)) + } + }) > > proc.time() user system elapsed 4.68 0.48 5.15