R Under development (unstable) (2024-11-18 r87347 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > #' > #' Header for all (concatenated) test files > #' > #' Require spatstat.model > #' Obtain environment variable controlling tests. > #' > #' $Revision: 1.5 $ $Date: 2020/04/30 05:31:37 $ > > require(spatstat.model) Loading required package: spatstat.model Loading required package: spatstat.data Loading required package: spatstat.univar spatstat.univar 3.1-1 Loading required package: spatstat.geom spatstat.geom 3.3-4 Loading required package: spatstat.random spatstat.random 3.3-2 Loading required package: spatstat.explore Loading required package: nlme spatstat.explore 3.3-3 Loading required package: rpart spatstat.model 3.3-3 > FULLTEST <- (nchar(Sys.getenv("SPATSTAT_TEST", unset="")) > 0) > ALWAYS <- TRUE > cat(paste("--------- Executing", + if(FULLTEST) "** ALL **" else "**RESTRICTED** subset of", + "test code -----------\n")) --------- Executing **RESTRICTED** subset of test code ----------- > # > # tests/rmhExpand.R > # > # test decisions about expansion of simulation window > # > # $Revision: 1.9 $ $Date: 2022/10/23 01:17:33 $ > # > > local({ + if(FULLTEST) { + ## check expansion in rmhmodel.ppm + fit <- ppm(cells ~x) + mod <- rmhmodel(fit) + is.expandable(mod) + wsim <- as.rectangle(mod$trend) + ## work around changes in 'unitname' + wcel <- as.owin(cells) + unitname(wcel) <- unitname(cells) + ## test + if(!identical(wsim, wcel)) + stop("Expansion occurred improperly in rmhmodel.ppm") + } + }) > > > > # > # tests/rmhTrend.R > # > # Problems with trend images (rmhmodel.ppm or rmhEngine) > # > > if(ALWAYS) { + local({ + set.seed(42) + + # Bug folder 37 of 8 feb 2011 + # rmhmodel.ppm -> predict.ppm + # + rmhResolveTypes -> is.subset.owin + + Z <- rescale(demopat, 7000) + X <- unmark(Z) + X1 <- split(Z)[[1]] + Int <- density(X,dimyx=200) + Lint <- eval.im(log(npoints(X1)*Int/npoints(X))) + M <- as.owin(Int) + MR <- intersect.owin(M,scalardilate(M,0.5,origin="midpoint")) + X1 <- X1[MR] + Fut <- ppm(X1~offset(Lint),covariates=list(Lint=Lint), + inter=BadGey(r=c(0.03,0.05),sat=3)) + Y <- rmh(Fut,control=list(expand=M,nrep=1e3), verbose=FALSE) + + }) + } > # > # tests/rmhmodel.ppm.R > # > # $Revision: 1.10 $ $Date: 2020/05/01 05:29:42 $ > # > # Case-by-case tests of rmhmodel.ppm > # > > if(FULLTEST) { + local({ + f <- ppm(cells) + m <- rmhmodel(f) + + f <- ppm(cells ~x) + m <- rmhmodel(f) + + f <- ppm(cells ~1, Strauss(0.1)) + m <- rmhmodel(f) + + f <- ppm(cells ~1, StraussHard(r=0.1,hc=0.05)) + m <- rmhmodel(f) + print(m) + + f <- ppm(cells ~1, Hardcore(0.07)) + m <- rmhmodel(f) + + f <- ppm(cells ~1, DiggleGratton(0.05,0.1)) + m <- rmhmodel(f) + + f <- ppm(cells ~1, Softcore(0.5), correction="isotropic") + m <- rmhmodel(f) + + f <- ppm(cells ~1, Geyer(0.07,2)) + m <- rmhmodel(f) + + f <- ppm(cells ~1, BadGey(c(0.07,0.1,0.13),2)) + m <- rmhmodel(f) + + f <- ppm(cells ~1, PairPiece(r = c(0.05, 0.1, 0.2))) + m <- rmhmodel(f) + + f <- ppm(cells ~1, AreaInter(r=0.06)) + m <- rmhmodel(f) + print(m) + + # multitype + + r <- matrix(0.07, 2, 2) + f <- ppm(amacrine ~1, MultiStrauss(c("off","on"),r)) + m <- rmhmodel(f) + print(m) + + h <- matrix(min(nndist(amacrine))/2, 2, 2) + f <- ppm(amacrine ~1, MultiStraussHard(c("off","on"),r, h)) + m <- rmhmodel(f) + + diag(r) <- NA + diag(h) <- NA + f <- ppm(amacrine ~1, MultiStrauss(c("off","on"),r)) + m <- rmhmodel(f) + + f <- ppm(amacrine ~1, MultiStraussHard(c("off","on"),r, h)) + m <- rmhmodel(f) + + # multitype data, interaction not dependent on type + + f <- ppm(amacrine ~marks, Strauss(0.05)) + m <- rmhmodel(f) + print(m) + + # trends + + f <- ppm(cells ~x, Strauss(0.1)) + m <- rmhmodel(f) + + f <- ppm(cells ~y, StraussHard(r=0.1,hc=0.05)) + m <- rmhmodel(f) + + f <- ppm(cells ~x+y, Hardcore(0.07)) + m <- rmhmodel(f) + print(m) + + f <- ppm(cells ~polynom(x,y,2), Softcore(0.5), correction="isotropic") + m <- rmhmodel(f) + + # covariates + + Z <- as.im(function(x,y){ x^2+y^2 }, as.owin(cells)) + f <- ppm(cells ~z, covariates=list(z=Z)) + m <- rmhmodel(f) + m <- rmhmodel(f, control=list(p=1)) + print(m) + + Zim <- as.im(Z, as.owin(cells)) + f <- ppm(cells ~z, covariates=list(z=Zim)) + m <- rmhmodel(f) + + Z <- as.im(function(x,y){ x^2+y }, as.owin(amacrine)) + f <- ppm(amacrine ~z + marks, covariates=list(z=Z)) + m <- rmhmodel(f) + print(m) + m <- rmhmodel(f, control=list(p=1)) + m <- rmhmodel(f, control=list(p=1,fixall=TRUE)) + print(m) + + Zim <- as.im(Z, as.owin(amacrine)) + f <- ppm(amacrine ~z + marks, covariates=list(z=Zim)) + m <- rmhmodel(f) + print(m) + + }) + } > # > # tests/rmhmodelHybrids.R > # > # Test that rmhmodel.ppm and rmhmodel.default > # work on Hybrid interaction models > # > # $Revision: 1.6 $ $Date: 2022/10/23 01:17:56 $ > # > > if(ALWAYS) { # involves C code + local({ + + ## ......... rmhmodel.ppm ....................... + fit1 <- ppm(redwood ~1, + Hybrid(A=Strauss(0.02), B=Geyer(0.1, 2), C=Geyer(0.15, 1))) + m1 <- rmhmodel(fit1) + m1 + reach(m1) + + ## Test of handling 'IsOffset' + fit2 <- ppm(cells ~1, Hybrid(H=Hardcore(0.05), G=Geyer(0.15, 2))) + m2 <- rmhmodel(fit2) + ## also test C code for hybrid interaction with hard core + fakecells <- rmh(fit2, nrep=1e4) + + ## Test of handling Poisson components + fit3 <- ppm(cells ~1, Hybrid(P=Poisson(), S=Strauss(0.05))) + X3 <- rmh(fit3, control=list(nrep=1e3,expand=1), verbose=FALSE) + + + }) + } Extracting model information...Evaluating trend...done. Extracting model information...Evaluating trend...done. Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. > > # > # tests/rmh.ppm.R > # > # $Revision: 1.5 $ $Date: 2020/05/01 05:29:42 $ > # > # Examples removed from rmh.ppm.Rd > # stripped down to minimal tests of validity > # > > local({ + op <- spatstat.options() + spatstat.options(rmh.nrep=10, npixel=10, ndummy.min=10) + spatstat.options(project.fast=TRUE) + Nrep <- 10 + + X <- swedishpines + if(FULLTEST) { + ## Poisson process + fit <- ppm(X ~1, Poisson()) + Xsim <- rmh(fit) + } + if(ALWAYS) { # Gibbs model => C code + ## Strauss process + fit <- ppm(X ~1, Strauss(r=7)) + Xsim <- rmh(fit) + + ## Strauss process simulated on a larger window + ## then clipped to original window + Xsim <- rmh(fit, control=list(nrep=Nrep, expand=1.1, periodic=TRUE)) + + ## Extension of model to another window (thanks to Tuomas Rajala) + Xsim <- rmh(fit, w=square(2)) + Xsim <- simulate(fit, w=square(2)) + + ## Strauss - hard core process + ## fit <- ppm(X ~1, StraussHard(r=7,hc=2)) + ## Xsim <- rmh(fit, start=list(n.start=X$n)) + + ## Geyer saturation process + ## fit <- ppm(X ~1, Geyer(r=7,sat=2)) + ## Xsim <- rmh(fit, start=list(n.start=X$n)) + + ## Area-interaction process + fit <- ppm(X ~1, AreaInter(r=7)) + Xsim <- rmh(fit, start=list(n.start=X$n)) + + ## Penttinen process + fit <- ppm(X ~1, Penttinen(r=7)) + Xsim <- rmh(fit, start=list(n.start=X$n)) + + ## soft core interaction process + ## X <- quadscheme(X, nd=50) + ## fit <- ppm(X ~1, Softcore(kappa=0.1), correction="isotropic") + ## Xsim <- rmh(fit, start=list(n.start=X$n)) + + ## Diggle-Gratton pairwise interaction model + ## fit <- ppm(cells ~1, DiggleGratton(0.05, 0.1)) + ## Xsim <- rmh(fit, start=list(n.start=cells$n)) + ## plot(Xsim, main="simulation from fitted Diggle-Gratton model") + + + ## piecewise-constant pairwise interaction function + X <- rSSI(0.05, 100) + fit <- ppm(X ~1, PairPiece(seq(0.02, 0.1, by=0.01))) + Xsim <- rmh(fit) + } + + ## marked point pattern + Y <- amacrine + + if(FULLTEST) { + #' marked Poisson models + fit <- ppm(Y) + Ysim <- rmh(fit) + + fit <- ppm(Y~marks) + Ysim <- rmh(fit) + + fit <- ppm(Y~x) + Ysim <- rmh(fit) + + fit <- ppm(Y~marks+x) + Ysim <- rmh(fit) + } + + if(ALWAYS) { + #' multitype Strauss + typ <- levels(Y$marks) + MS <- MultiStrauss(types = typ, + radii=matrix(0.07, ncol=2, nrow=2)) + + fit <- ppm(Y~marks*x, MS) + Ysim <- rmh(fit) + + #' multitype Hardcore + h0 <- minnndist(unmark(Y)) * 0.95 + MH <- MultiHard(types = typ, + hradii=matrix(h0, ncol=2, nrow=2)) + fit <- ppm(Y ~ marks+x, MH) + Ysim <- rmh(fit) + #' other code blocks + Ysim <- rmh(fit, control=list(periodic=TRUE, expand=1)) + Ysim <- rmh(fit, control=list(periodic=FALSE, expand=1)) + #' multihard core with invalid initial state + Ydouble <- superimpose(Y, rjitter(Y, h0/10)) + Ysim <- rmh(fit, start=list(x.start=Ydouble)) + + #' Lennard-Jones + fut <- ppm(unmark(longleaf) ~ 1, LennardJones(), rbord=1) + Ysim <- rmh(fut) + Ysim <- rmh(fut, control=list(periodic=TRUE, expand=1)) + } + + spatstat.options(op) + }) Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. Model is invalid - projecting it Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Evaluating trend integral...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Evaluating trend integral...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Evaluating trend integral...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Evaluating trend integral...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Evaluating trend integral...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Starting simulation. Initial state...Ready to simulate. Generating proposal points...Running Metropolis-Hastings. > > > reset.spatstat.options() > #' > #' tests/rmhsnoopy.R > #' > #' Test the rmh interactive debugger > #' > #' $Revision: 1.11 $ $Date: 2022/10/23 01:19:00 $ > > if(ALWAYS) { # may depend on platform + local({ + R <- 0.1 + ## fit a model and prepare to simulate + model <- ppm(amacrine ~ marks + x, Strauss(R)) + siminfo <- rmh(model, preponly=TRUE) + Wsim <- siminfo$control$internal$w.sim + Wclip <- siminfo$control$internal$w.clip + if(is.null(Wclip)) Wclip <- Window(cells) + + ## determine debugger interface panel geometry + Xinit <- runifpoint(ex=amacrine)[1:40] + P <- rmhsnoop(Wsim=Wsim, Wclip=Wclip, R=R, + xcoords=Xinit$x, + ycoords=Xinit$y, + mlevels=levels(marks(Xinit)), + mcodes=as.integer(marks(Xinit)) - 1L, + irep=3L, itype=1L, + proptype=1, proplocn=c(0.5, 0.5), propmark=0, propindx=0, + numerator=42, denominator=24, + panel.only=TRUE) + boxes <- P$boxes + clicknames <- names(P$clicks) + boxcentres <- do.call(concatxy, lapply(boxes, centroid.owin)) + + ## design a sequence of clicks + actionsequence <- c("Up", "Down", "Left", "Right", + "At Proposal", "Zoom Out", "Zoom In", "Reset", + "Accept", "Reject", "Print Info", + "Next Iteration", "Next Shift", "Next Death", + "Skip 10", "Skip 100", "Skip 1000", "Skip 10,000", + "Skip 100,000", "Exit Debugger") + actionsequence <- match(actionsequence, clicknames) + actionsequence <- actionsequence[!is.na(actionsequence)] + xy <- lapply(boxcentres, "[", actionsequence) + + ## queue the click sequence + spatstat.utils::queueSpatstatLocator(xy$x,xy$y) + + ## go + rmh(model, snoop=TRUE) + }) + } Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Evaluating trend integral...Extracting model information...Evaluating trend...done. Checking arguments..determining simulation windows...Evaluating trend integral...Starting simulation. Initial state... Creating debugger environment..Done. Ready to simulate. Generating proposal points...Running Metropolis-Hastings. ------------------- Iteration 0 Simulation window: window: rectangle = [0, 1.6012085] x [0, 1] units (one unit = 662 microns) Clipping window: window: rectangle = [0, 1.6012085] x [0, 1] units (one unit = 662 microns) Current state: Marked planar point pattern: 72 points Multitype, with levels = off, on window: rectangle = [0, 1.6012085] x [0, 1] units (one unit = 662 microns) Proposal type: Shift Shift data point 18 from current location (0.290108, 0.0160037, "off") to new location (0.620599, 0.378428, "off") Hastings ratio = 6831.92992943083 / 14545.6615344214 = 0.469688498750194 Fate of proposal: Rejected Marked planar point pattern: 350 points Multitype, with levels = off, on window: rectangle = [0, 1.6012085] x [0, 1] units (one unit = 662 microns) Pattern was generated by Metropolis-Hastings simulation. > > proc.time() user system elapsed 11.54 1.26 12.78