R Under development (unstable) (2024-11-18 r87347 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > #' > #' Header for all (concatenated) test files > #' > #' Require spatstat.model > #' Obtain environment variable controlling tests. > #' > #' $Revision: 1.5 $ $Date: 2020/04/30 05:31:37 $ > > require(spatstat.model) Loading required package: spatstat.model Loading required package: spatstat.data Loading required package: spatstat.univar spatstat.univar 3.1-1 Loading required package: spatstat.geom spatstat.geom 3.3-4 Loading required package: spatstat.random spatstat.random 3.3-2 Loading required package: spatstat.explore Loading required package: nlme spatstat.explore 3.3-3 Loading required package: rpart spatstat.model 3.3-3 > FULLTEST <- (nchar(Sys.getenv("SPATSTAT_TEST", unset="")) > 0) > ALWAYS <- TRUE > cat(paste("--------- Executing", + if(FULLTEST) "** ALL **" else "**RESTRICTED** subset of", + "test code -----------\n")) --------- Executing **RESTRICTED** subset of test code ----------- > #' > #' tests/deltasuffstat.R > #' > #' Explicit tests of 'deltasuffstat' > #' > #' $Revision: 1.4 $ $Date: 2021/01/22 08:08:48 $ > > if(!FULLTEST) + spatstat.options(npixel=32, ndummy.min=16) > > if(ALWAYS) { # depends on C code + local({ + + disagree <- function(x, y, tol=1e-7) { !is.null(x) && !is.null(y) && max(abs(x-y)) > tol } + + flydelta <- function(model, modelname="") { + ## Check execution of different algorithms for 'deltasuffstat' + dSS <- deltasuffstat(model, sparseOK=TRUE) + dBS <- deltasuffstat(model, sparseOK=TRUE, use.special=FALSE, force=TRUE) + dBF <- deltasuffstat(model, sparseOK=FALSE, use.special=FALSE, force=TRUE) + ## Compare results + if(disagree(dBS, dSS)) + stop(paste(modelname, "model: Brute force algorithm disagrees with special algorithm")) + if(disagree(dBF, dBS)) + stop(paste(modelname, "model: Sparse and full versions of brute force algorithm disagree")) + return(invisible(NULL)) + } + + modelS <- ppm(cells ~ x, Strauss(0.13), nd=10) + flydelta(modelS, "Strauss") + + antsub <- ants[c(FALSE,TRUE,FALSE)] + rmat <- matrix(c(130, 90, 90, 60), 2, 2) + + modelM <- ppm(antsub ~ 1, MultiStrauss(rmat), nd=16) + flydelta(modelM, "MultiStrauss") + + modelA <- ppm(antsub ~ 1, HierStrauss(rmat, archy=c(2,1)), nd=16) + flydelta(modelA, "HierStrauss") + }) + + } > > reset.spatstat.options() > #' > #' tests/density.R > #' > #' Test behaviour of density() methods, > #' relrisk(), Smooth() > #' and inhomogeneous summary functions > #' and idw, adaptive.density, intensity > #' and SpatialMedian, SpatialQuantile > #' > #' $Revision: 1.67 $ $Date: 2024/01/29 07:07:16 $ > #' > > if(!FULLTEST) + spatstat.options(npixel=32, ndummy.min=16) > > > local({ + ## likewise 'relrisk.ppm' + fit <- ppm(ants ~ x) + rants <- function(..., model=fit) { + a <- relrisk(model, sigma=100, se=TRUE, ...) + return(TRUE) + } + if(ALWAYS) { + rants() + rants(diggle=TRUE) + rants(edge=FALSE) + rants(at="points") + rants(casecontrol=FALSE) + rants(relative=TRUE) + } + if(FULLTEST) { + rants(diggle=TRUE, at="points") + rants(edge=FALSE, at="points") + rants(casecontrol=FALSE, relative=TRUE) + rants(casecontrol=FALSE,at="points") + rants(relative=TRUE,at="points") + rants(casecontrol=FALSE, relative=TRUE,at="points") + rants(relative=TRUE, control="Cataglyphis", case="Messor") + rants(relative=TRUE, control="Cataglyphis", case="Messor", at="points") + } + ## more than 2 types + fut <- ppm(sporophores ~ x) + if(ALWAYS) { + rants(model=fut) + } + if(FULLTEST) { + rants(model=fut, at="points") + rants(model=fut, relative=TRUE, at="points") + } + if(FULLTEST) { + ## cases of 'intensity' etc + a <- intensity(ppm(amacrine ~ 1)) + } + }) > > reset.spatstat.options() > > #' > #' tests/diagnostique.R > #' > #' Diagnostic tools such as diagnose.ppm, qqplot.ppm > #' > #' $Revision: 1.6 $ $Date: 2020/04/28 12:58:26 $ > #' > > if(FULLTEST) { + local({ + fit <- ppm(cells ~ x) + diagE <- diagnose.ppm(fit, type="eem") + diagI <- diagnose.ppm(fit, type="inverse") + diagP <- diagnose.ppm(fit, type="Pearson") + plot(diagE, which="all") + plot(diagI, which="smooth") + plot(diagP, which="x") + plot(diagP, which="marks", plot.neg="discrete") + plot(diagP, which="marks", plot.neg="contour") + plot(diagP, which="smooth", srange=c(-5,5)) + plot(diagP, which="smooth", plot.smooth="contour") + plot(diagP, which="smooth", plot.smooth="image") + + fitS <- ppm(cells ~ x, Strauss(0.08)) + diagES <- diagnose.ppm(fitS, type="eem", clip=FALSE) + diagIS <- diagnose.ppm(fitS, type="inverse", clip=FALSE) + diagPS <- diagnose.ppm(fitS, type="Pearson", clip=FALSE) + plot(diagES, which="marks", plot.neg="imagecontour") + plot(diagPS, which="marks", plot.neg="discrete") + plot(diagPS, which="marks", plot.neg="contour") + plot(diagPS, which="smooth", plot.smooth="image") + plot(diagPS, which="smooth", plot.smooth="contour") + plot(diagPS, which="smooth", plot.smooth="persp") + + #' infinite reach, not border-corrected + fut <- ppm(cells ~ x, Softcore(0.5), correction="isotropic") + diagnose.ppm(fut) + + #' + diagPX <- diagnose.ppm(fit, type="Pearson", cumulative=FALSE) + plot(diagPX, which="y") + + #' simulation based + e <- envelope(cells, nsim=4, savepatterns=TRUE, savefuns=TRUE) + Plist <- rpoispp(40, nsim=5) + + qf <- qqplot.ppm(fit, nsim=4, expr=e, plot.it=FALSE) + print(qf) + qp <- qqplot.ppm(fit, nsim=5, expr=Plist, fast=FALSE) + print(qp) + qp <- qqplot.ppm(fit, nsim=5, expr=expression(rpoispp(40)), plot.it=FALSE) + print(qp) + qg <- qqplot.ppm(fit, nsim=5, style="classical", plot.it=FALSE) + print(qg) + + #' lurking.ppm + #' covariate is numeric vector + fitx <- ppm(cells ~ x) + yvals <- coords(as.ppp(quad.ppm(fitx)))[,"y"] + lurking(fitx, yvals) + #' covariate is stored but is not used in model + Z <- as.im(function(x,y){ x+y }, Window(cells)) + fitxx <- ppm(cells ~ x, data=solist(Zed=Z), allcovar=TRUE) + lurking(fitxx, expression(Zed)) + #' envelope is a ppplist; length < nsim; glmdata=NULL + fit <- ppm(cells ~ 1) + stuff <- lurking(fit, expression(x), envelope=Plist, plot.sd=FALSE) + #' plot.lurk + plot(stuff, shade=NULL) + }) + } > > #' > #' tests/deepeepee.R > #' > #' Tests for determinantal point process models > #' > #' $Revision: 1.9 $ $Date: 2022/04/24 09:14:46 $ > > local({ + if(ALWAYS) { + #' simulate.dppm + jpines <- residualspaper$Fig1 + fit <- dppm(jpines ~ 1, dppGauss) + set.seed(10981) + simulate(fit, W=square(5)) + } + if(FULLTEST) { + #' simulate.detpointprocfamily - code blocks + model <- dppGauss(lambda=100, alpha=.05, d=2) + simulate(model, seed=1999, correction="border") + u <- is.stationary(model) + #' other methods for dppm + kay <- Kmodel(fit) + gee <- pcfmodel(fit) + lam <- intensity(fit) + arr <- reach(fit) + pah <- parameters(fit) + #' a user bug report - matrix dimension error + set.seed(256) + dat <- simulate( dppGauss(lambda = 8.5, alpha = 0.1, d = 2), nsim = 1) + } + if(FULLTEST) { + ## cover print.summary.dppm + jpines <- japanesepines[c(TRUE,FALSE,FALSE,FALSE)] + print(summary(dppm(jpines ~ 1, dppGauss))) + print(summary(dppm(jpines ~ 1, dppGauss, method="c"))) + print(summary(dppm(jpines ~ 1, dppGauss, method="p"))) + print(summary(dppm(jpines ~ 1, dppGauss, method="a"))) + } + #' dppeigen code blocks + if(ALWAYS) { + mod <- dppMatern(lambda=2, alpha=0.01, nu=1, d=2) + uT <- dppeigen(mod, trunc=1.1, Wscale=c(1,1), stationary=TRUE) + } + if(FULLTEST) { + uF <- dppeigen(mod, trunc=1.1, Wscale=c(1,1), stationary=FALSE) + vT <- dppeigen(mod, trunc=0.98, Wscale=c(1,1), stationary=TRUE) + vF <- dppeigen(mod, trunc=0.98, Wscale=c(1,1), stationary=FALSE) + } + }) > > proc.time() user system elapsed 9.56 0.62 10.15