#' #' Header for all (concatenated) test files #' #' Require spatstat.model #' Obtain environment variable controlling tests. #' #' $Revision: 1.5 $ $Date: 2020/04/30 05:31:37 $ require(spatstat.model) FULLTEST <- (nchar(Sys.getenv("SPATSTAT_TEST", unset="")) > 0) ALWAYS <- TRUE cat(paste("--------- Executing", if(FULLTEST) "** ALL **" else "**RESTRICTED** subset of", "test code -----------\n")) #' tests/aucroc.R #' #' AUC and ROC code #' #' $Revision: 1.6 $ $Date: 2020/11/02 06:26:45 $ local({ if(FULLTEST) { fit <- kppm(redwood ~ I(y-x)) a <- roc(fit) b <- auc(fit) fet <- ppm(amacrine~x+y+marks) d <- roc(fet) e <- auc(fet) } }) ## tests/cdf.test.R local({ NSIM <- 9 op <- spatstat.options(ndummy.min=16, npixel=32) if(FULLTEST) { ## Monte Carlo test for Gibbs model fit <- ppm(cells ~ 1, Strauss(0.07)) cdf.test(fit, "x", nsim=NSIM) ## cdf.test.slrm fut <- slrm(japanesepines ~ x + y) Z <- distmap(japanesepines) cdf.test(fut, Z) } reset.spatstat.options() }) #' #' tests/contrib.R #' #' Tests for user-contributed code in spatstat #' #' $Revision: 1.4 $ $Date: 2021/04/17 02:32:24 $ local({ #' Jinhom #' Marie-Colette van Lieshout and Ottmar Cronie X <- redwood3 if(FULLTEST) { fit <- ppm(X ~ polynom(x,y,2)) } else { X <- X[c(TRUE,FALSE)] spatstat.options(npixel=32, ndummy.min=16) fit <- ppm(X ~ x) } lam <- predict(fit) lamX <- fitted(fit, dataonly=TRUE) lmin <- 0.9 * min(lam) g1 <- Ginhom(X, lambda=fit, update=TRUE) if(FULLTEST) { g2 <- Ginhom(X, lambda=fit, update=FALSE, lmin = lmin) g3 <- Ginhom(X, lambda=lam, lmin=lmin) g4 <- Ginhom(X, lambda=lamX, lmin=lmin) } if(ALWAYS) { f2 <- Finhom(X, lambda=fit, update=FALSE) } if(FULLTEST) { f1 <- Finhom(X, lambda=fit, update=TRUE) f3 <- Finhom(X, lambda=lam, lmin=lmin) } if(!FULLTEST) reset.spatstat.options() })