#' #' Header for all (concatenated) test files #' #' Require spatstat.model #' Obtain environment variable controlling tests. #' #' $Revision: 1.5 $ $Date: 2020/04/30 05:31:37 $ require(spatstat.model) FULLTEST <- (nchar(Sys.getenv("SPATSTAT_TEST", unset="")) > 0) ALWAYS <- TRUE cat(paste("--------- Executing", if(FULLTEST) "** ALL **" else "**RESTRICTED** subset of", "test code -----------\n")) #' #' tests/hobjects.R #' #' Validity of methods for ppm(... method="ho") #' #' $Revision: 1.4 $ $Date: 2022/06/18 10:14:44 $ if(FULLTEST) { local({ set.seed(42) fit <- ppm(cells ~1, Strauss(0.1), improve.type="ho", nsim=10) fitx <- ppm(cells ~offset(x), Strauss(0.1), improve.type="ho", nsim=10) a <- AIC(fit) ax <- AIC(fitx) f <- fitted(fit) fx <- fitted(fitx) p <- predict(fit) px <- predict(fitx) }) } #' tests/hypotests.R #' Hypothesis tests #' #' $Revision: 1.10 $ $Date: 2023/07/17 07:30:48 $ if(FULLTEST) { local({ #' scan test with baseline fit <- ppm(cells ~ x) lam <- predict(fit) rr <- c(0.05, 1) scan.test(cells, rr, nsim=5, method="poisson", baseline=fit, alternative="less") scan.test(cells, rr, nsim=5, method="poisson", baseline=lam, alternative="less") }) } #' #' tests/interact.R #' #' Support for interaction objects #' #' $Revision: 1.2 $ $Date: 2020/04/28 12:58:26 $ if(FULLTEST) { local({ #' print.intermaker Strauss Geyer Ord #' intermaker BS <- get("BlankStrauss", envir=environment(Strauss)) BD <- function(r) { instantiate.interact(BS, list(r=r)) } BlueDanube <- intermaker(BD, BS) }) } #' tests/ippm.R #' Tests of 'ippm' class #' $Revision: 1.6 $ $Date: 2020/04/28 12:58:26 $ if(FULLTEST) { local({ # .......... set up example from help file ................. nd <- 10 gamma0 <- 3 delta0 <- 5 POW <- 3 # Terms in intensity Z <- function(x,y) { -2*y } f <- function(x,y,gamma,delta) { 1 + exp(gamma - delta * x^POW) } # True intensity lamb <- function(x,y,gamma,delta) { 200 * exp(Z(x,y)) * f(x,y,gamma,delta) } # Simulate realisation lmax <- max(lamb(0,0,gamma0,delta0), lamb(1,1,gamma0,delta0)) set.seed(42) X <- rpoispp(lamb, lmax=lmax, win=owin(), gamma=gamma0, delta=delta0) # Partial derivatives of log f DlogfDgamma <- function(x,y, gamma, delta) { topbit <- exp(gamma - delta * x^POW) topbit/(1 + topbit) } DlogfDdelta <- function(x,y, gamma, delta) { topbit <- exp(gamma - delta * x^POW) - (x^POW) * topbit/(1 + topbit) } # irregular score Dlogf <- list(gamma=DlogfDgamma, delta=DlogfDdelta) # fit model fit <- ippm(X ~Z + offset(log(f)), covariates=list(Z=Z, f=f), iScore=Dlogf, start=list(gamma=1, delta=1), nd=nd) # fit model with logistic likelihood but without iScore fitlo <- ippm(X ~Z + offset(log(f)), method="logi", covariates=list(Z=Z, f=f), start=list(gamma=1, delta=1), nd=nd) ## ............. test ippm class support ...................... Ar <- model.matrix(fit) Ai <- model.matrix(fit, irregular=TRUE) An <- model.matrix(fit, irregular=TRUE, keepNA=FALSE) AS <- model.matrix(fit, irregular=TRUE, subset=(abs(Z) < 0.5)) Zr <- model.images(fit) Zi <- model.images(fit, irregular=TRUE) ## update.ippm fit2 <- update(fit, . ~ . + I(Z^2)) fit0 <- update(fit, . ~ . - Z, start=list(gamma=2, delta=4)) oldfit <- ippm(X, ~Z + offset(log(f)), covariates=list(Z=Z, f=f), iScore=Dlogf, start=list(gamma=1, delta=1), nd=nd) oldfit2 <- update(oldfit, . ~ . + I(Z^2)) oldfit0 <- update(oldfit, . ~ . - Z, start=list(gamma=2, delta=4)) ## again with logistic fitlo2 <- update(fitlo, . ~ . + I(Z^2)) fitlo0 <- update(fitlo, . ~ . - Z, start=list(gamma=2, delta=4)) oldfitlo <- ippm(X, ~Z + offset(log(f)), method="logi", covariates=list(Z=Z, f=f), start=list(gamma=1, delta=1), nd=nd) oldfitlo2 <- update(oldfitlo, . ~ . + I(Z^2)) oldfitlo0 <- update(oldfitlo, . ~ . - Z, start=list(gamma=2, delta=4)) ## anova.ppm including ippm objects fit0 <- update(fit, . ~ Z) fit0lo <- update(fitlo, . ~ Z) A <- anova(fit0, fit) Alo <- anova(fit0lo, fitlo) }) }