#' #' Header for all (concatenated) test files #' #' Require spatstat.model #' Obtain environment variable controlling tests. #' #' $Revision: 1.5 $ $Date: 2020/04/30 05:31:37 $ require(spatstat.model) FULLTEST <- (nchar(Sys.getenv("SPATSTAT_TEST", unset="")) > 0) ALWAYS <- TRUE cat(paste("--------- Executing", if(FULLTEST) "** ALL **" else "**RESTRICTED** subset of", "test code -----------\n")) #' #' tests/deltasuffstat.R #' #' Explicit tests of 'deltasuffstat' #' #' $Revision: 1.4 $ $Date: 2021/01/22 08:08:48 $ if(!FULLTEST) spatstat.options(npixel=32, ndummy.min=16) if(ALWAYS) { # depends on C code local({ disagree <- function(x, y, tol=1e-7) { !is.null(x) && !is.null(y) && max(abs(x-y)) > tol } flydelta <- function(model, modelname="") { ## Check execution of different algorithms for 'deltasuffstat' dSS <- deltasuffstat(model, sparseOK=TRUE) dBS <- deltasuffstat(model, sparseOK=TRUE, use.special=FALSE, force=TRUE) dBF <- deltasuffstat(model, sparseOK=FALSE, use.special=FALSE, force=TRUE) ## Compare results if(disagree(dBS, dSS)) stop(paste(modelname, "model: Brute force algorithm disagrees with special algorithm")) if(disagree(dBF, dBS)) stop(paste(modelname, "model: Sparse and full versions of brute force algorithm disagree")) return(invisible(NULL)) } modelS <- ppm(cells ~ x, Strauss(0.13), nd=10) flydelta(modelS, "Strauss") antsub <- ants[c(FALSE,TRUE,FALSE)] rmat <- matrix(c(130, 90, 90, 60), 2, 2) modelM <- ppm(antsub ~ 1, MultiStrauss(rmat), nd=16) flydelta(modelM, "MultiStrauss") modelA <- ppm(antsub ~ 1, HierStrauss(rmat, archy=c(2,1)), nd=16) flydelta(modelA, "HierStrauss") }) } reset.spatstat.options() #' #' tests/density.R #' #' Test behaviour of density() methods, #' relrisk(), Smooth() #' and inhomogeneous summary functions #' and idw, adaptive.density, intensity #' and SpatialMedian, SpatialQuantile #' #' $Revision: 1.67 $ $Date: 2024/01/29 07:07:16 $ #' if(!FULLTEST) spatstat.options(npixel=32, ndummy.min=16) local({ ## likewise 'relrisk.ppm' fit <- ppm(ants ~ x) rants <- function(..., model=fit) { a <- relrisk(model, sigma=100, se=TRUE, ...) return(TRUE) } if(ALWAYS) { rants() rants(diggle=TRUE) rants(edge=FALSE) rants(at="points") rants(casecontrol=FALSE) rants(relative=TRUE) } if(FULLTEST) { rants(diggle=TRUE, at="points") rants(edge=FALSE, at="points") rants(casecontrol=FALSE, relative=TRUE) rants(casecontrol=FALSE,at="points") rants(relative=TRUE,at="points") rants(casecontrol=FALSE, relative=TRUE,at="points") rants(relative=TRUE, control="Cataglyphis", case="Messor") rants(relative=TRUE, control="Cataglyphis", case="Messor", at="points") } ## more than 2 types fut <- ppm(sporophores ~ x) if(ALWAYS) { rants(model=fut) } if(FULLTEST) { rants(model=fut, at="points") rants(model=fut, relative=TRUE, at="points") } if(FULLTEST) { ## cases of 'intensity' etc a <- intensity(ppm(amacrine ~ 1)) } }) reset.spatstat.options() #' #' tests/diagnostique.R #' #' Diagnostic tools such as diagnose.ppm, qqplot.ppm #' #' $Revision: 1.6 $ $Date: 2020/04/28 12:58:26 $ #' if(FULLTEST) { local({ fit <- ppm(cells ~ x) diagE <- diagnose.ppm(fit, type="eem") diagI <- diagnose.ppm(fit, type="inverse") diagP <- diagnose.ppm(fit, type="Pearson") plot(diagE, which="all") plot(diagI, which="smooth") plot(diagP, which="x") plot(diagP, which="marks", plot.neg="discrete") plot(diagP, which="marks", plot.neg="contour") plot(diagP, which="smooth", srange=c(-5,5)) plot(diagP, which="smooth", plot.smooth="contour") plot(diagP, which="smooth", plot.smooth="image") fitS <- ppm(cells ~ x, Strauss(0.08)) diagES <- diagnose.ppm(fitS, type="eem", clip=FALSE) diagIS <- diagnose.ppm(fitS, type="inverse", clip=FALSE) diagPS <- diagnose.ppm(fitS, type="Pearson", clip=FALSE) plot(diagES, which="marks", plot.neg="imagecontour") plot(diagPS, which="marks", plot.neg="discrete") plot(diagPS, which="marks", plot.neg="contour") plot(diagPS, which="smooth", plot.smooth="image") plot(diagPS, which="smooth", plot.smooth="contour") plot(diagPS, which="smooth", plot.smooth="persp") #' infinite reach, not border-corrected fut <- ppm(cells ~ x, Softcore(0.5), correction="isotropic") diagnose.ppm(fut) #' diagPX <- diagnose.ppm(fit, type="Pearson", cumulative=FALSE) plot(diagPX, which="y") #' simulation based e <- envelope(cells, nsim=4, savepatterns=TRUE, savefuns=TRUE) Plist <- rpoispp(40, nsim=5) qf <- qqplot.ppm(fit, nsim=4, expr=e, plot.it=FALSE) print(qf) qp <- qqplot.ppm(fit, nsim=5, expr=Plist, fast=FALSE) print(qp) qp <- qqplot.ppm(fit, nsim=5, expr=expression(rpoispp(40)), plot.it=FALSE) print(qp) qg <- qqplot.ppm(fit, nsim=5, style="classical", plot.it=FALSE) print(qg) #' lurking.ppm #' covariate is numeric vector fitx <- ppm(cells ~ x) yvals <- coords(as.ppp(quad.ppm(fitx)))[,"y"] lurking(fitx, yvals) #' covariate is stored but is not used in model Z <- as.im(function(x,y){ x+y }, Window(cells)) fitxx <- ppm(cells ~ x, data=solist(Zed=Z), allcovar=TRUE) lurking(fitxx, expression(Zed)) #' envelope is a ppplist; length < nsim; glmdata=NULL fit <- ppm(cells ~ 1) stuff <- lurking(fit, expression(x), envelope=Plist, plot.sd=FALSE) #' plot.lurk plot(stuff, shade=NULL) }) } #' #' tests/deepeepee.R #' #' Tests for determinantal point process models #' #' $Revision: 1.9 $ $Date: 2022/04/24 09:14:46 $ local({ if(ALWAYS) { #' simulate.dppm jpines <- residualspaper$Fig1 fit <- dppm(jpines ~ 1, dppGauss) set.seed(10981) simulate(fit, W=square(5)) } if(FULLTEST) { #' simulate.detpointprocfamily - code blocks model <- dppGauss(lambda=100, alpha=.05, d=2) simulate(model, seed=1999, correction="border") u <- is.stationary(model) #' other methods for dppm kay <- Kmodel(fit) gee <- pcfmodel(fit) lam <- intensity(fit) arr <- reach(fit) pah <- parameters(fit) #' a user bug report - matrix dimension error set.seed(256) dat <- simulate( dppGauss(lambda = 8.5, alpha = 0.1, d = 2), nsim = 1) } if(FULLTEST) { ## cover print.summary.dppm jpines <- japanesepines[c(TRUE,FALSE,FALSE,FALSE)] print(summary(dppm(jpines ~ 1, dppGauss))) print(summary(dppm(jpines ~ 1, dppGauss, method="c"))) print(summary(dppm(jpines ~ 1, dppGauss, method="p"))) print(summary(dppm(jpines ~ 1, dppGauss, method="a"))) } #' dppeigen code blocks if(ALWAYS) { mod <- dppMatern(lambda=2, alpha=0.01, nu=1, d=2) uT <- dppeigen(mod, trunc=1.1, Wscale=c(1,1), stationary=TRUE) } if(FULLTEST) { uF <- dppeigen(mod, trunc=1.1, Wscale=c(1,1), stationary=FALSE) vT <- dppeigen(mod, trunc=0.98, Wscale=c(1,1), stationary=TRUE) vF <- dppeigen(mod, trunc=0.98, Wscale=c(1,1), stationary=FALSE) } })