R Under development (unstable) (2024-02-01 r85851 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > #' > #' Header for all (concatenated) test files > #' > #' Require spatstat.model > #' Obtain environment variable controlling tests. > #' > #' $Revision: 1.5 $ $Date: 2020/04/30 05:31:37 $ > > require(spatstat.model) Loading required package: spatstat.model Loading required package: spatstat.data Loading required package: spatstat.geom spatstat.geom 3.2-8 Loading required package: spatstat.random spatstat.random 3.2-2 Loading required package: spatstat.explore Loading required package: nlme spatstat.explore 3.2-6 Loading required package: rpart spatstat.model 3.2-10 > FULLTEST <- (nchar(Sys.getenv("SPATSTAT_TEST", unset="")) > 0) > ALWAYS <- TRUE > cat(paste("--------- Executing", + if(FULLTEST) "** ALL **" else "**RESTRICTED** subset of", + "test code -----------\n")) --------- Executing **RESTRICTED** subset of test code ----------- > #' > #' tests/hobjects.R > #' > #' Validity of methods for ppm(... method="ho") > #' > #' $Revision: 1.4 $ $Date: 2022/06/18 10:14:44 $ > > > if(FULLTEST) { + local({ + set.seed(42) + fit <- ppm(cells ~1, Strauss(0.1), improve.type="ho", nsim=10) + fitx <- ppm(cells ~offset(x), Strauss(0.1), improve.type="ho", nsim=10) + + a <- AIC(fit) + ax <- AIC(fitx) + + f <- fitted(fit) + fx <- fitted(fitx) + + p <- predict(fit) + px <- predict(fitx) + }) + } > > > #' tests/hypotests.R > #' Hypothesis tests > #' > #' $Revision: 1.10 $ $Date: 2023/07/17 07:30:48 $ > > if(FULLTEST) { + local({ + + #' scan test with baseline + fit <- ppm(cells ~ x) + lam <- predict(fit) + rr <- c(0.05, 1) + scan.test(cells, rr, nsim=5, + method="poisson", baseline=fit, alternative="less") + scan.test(cells, rr, nsim=5, + method="poisson", baseline=lam, alternative="less") + }) + } > #' > #' tests/interact.R > #' > #' Support for interaction objects > #' > #' $Revision: 1.2 $ $Date: 2020/04/28 12:58:26 $ > > if(FULLTEST) { + local({ + #' print.intermaker + Strauss + Geyer + Ord + #' intermaker + BS <- get("BlankStrauss", envir=environment(Strauss)) + BD <- function(r) { instantiate.interact(BS, list(r=r)) } + BlueDanube <- intermaker(BD, BS) + }) + } > > #' tests/ippm.R > #' Tests of 'ippm' class > #' $Revision: 1.6 $ $Date: 2020/04/28 12:58:26 $ > > if(FULLTEST) { + local({ + # .......... set up example from help file ................. + nd <- 10 + gamma0 <- 3 + delta0 <- 5 + POW <- 3 + # Terms in intensity + Z <- function(x,y) { -2*y } + f <- function(x,y,gamma,delta) { 1 + exp(gamma - delta * x^POW) } + # True intensity + lamb <- function(x,y,gamma,delta) { 200 * exp(Z(x,y)) * f(x,y,gamma,delta) } + # Simulate realisation + lmax <- max(lamb(0,0,gamma0,delta0), lamb(1,1,gamma0,delta0)) + set.seed(42) + X <- rpoispp(lamb, lmax=lmax, win=owin(), gamma=gamma0, delta=delta0) + # Partial derivatives of log f + DlogfDgamma <- function(x,y, gamma, delta) { + topbit <- exp(gamma - delta * x^POW) + topbit/(1 + topbit) + } + DlogfDdelta <- function(x,y, gamma, delta) { + topbit <- exp(gamma - delta * x^POW) + - (x^POW) * topbit/(1 + topbit) + } + # irregular score + Dlogf <- list(gamma=DlogfDgamma, delta=DlogfDdelta) + # fit model + fit <- ippm(X ~Z + offset(log(f)), + covariates=list(Z=Z, f=f), + iScore=Dlogf, + start=list(gamma=1, delta=1), + nd=nd) + # fit model with logistic likelihood but without iScore + fitlo <- ippm(X ~Z + offset(log(f)), + method="logi", + covariates=list(Z=Z, f=f), + start=list(gamma=1, delta=1), + nd=nd) + + ## ............. test ippm class support ...................... + Ar <- model.matrix(fit) + Ai <- model.matrix(fit, irregular=TRUE) + An <- model.matrix(fit, irregular=TRUE, keepNA=FALSE) + AS <- model.matrix(fit, irregular=TRUE, subset=(abs(Z) < 0.5)) + + Zr <- model.images(fit) + Zi <- model.images(fit, irregular=TRUE) + ## update.ippm + fit2 <- update(fit, . ~ . + I(Z^2)) + fit0 <- update(fit, + . ~ . - Z, + start=list(gamma=2, delta=4)) + oldfit <- ippm(X, + ~Z + offset(log(f)), + covariates=list(Z=Z, f=f), + iScore=Dlogf, + start=list(gamma=1, delta=1), + nd=nd) + oldfit2 <- update(oldfit, . ~ . + I(Z^2)) + oldfit0 <- update(oldfit, + . ~ . - Z, + start=list(gamma=2, delta=4)) + ## again with logistic + fitlo2 <- update(fitlo, . ~ . + I(Z^2)) + fitlo0 <- update(fitlo, + . ~ . - Z, + start=list(gamma=2, delta=4)) + oldfitlo <- ippm(X, + ~Z + offset(log(f)), + method="logi", + covariates=list(Z=Z, f=f), + start=list(gamma=1, delta=1), + nd=nd) + oldfitlo2 <- update(oldfitlo, . ~ . + I(Z^2)) + oldfitlo0 <- update(oldfitlo, + . ~ . - Z, + start=list(gamma=2, delta=4)) + ## anova.ppm including ippm objects + fit0 <- update(fit, . ~ Z) + fit0lo <- update(fitlo, . ~ Z) + A <- anova(fit0, fit) + Alo <- anova(fit0lo, fitlo) + }) + } > > proc.time() user system elapsed 1.67 0.28 1.93