#' #' Header for all (concatenated) test files #' #' Require spatstat.explore #' Obtain environment variable controlling tests. #' #' $Revision: 1.5 $ $Date: 2020/04/30 05:31:37 $ require(spatstat.explore) FULLTEST <- (nchar(Sys.getenv("SPATSTAT_TEST", unset="")) > 0) ALWAYS <- TRUE cat(paste("--------- Executing", if(FULLTEST) "** ALL **" else "**RESTRICTED** subset of", "test code -----------\n")) #' #' tests/density.R #' #' Test behaviour of density() methods, #' relrisk(), Smooth() #' and inhomogeneous summary functions #' and idw, adaptive.density, intensity #' #' $Revision: 1.62 $ $Date: 2022/05/22 11:14:51 $ #' if(!FULLTEST) spatstat.options(npixel=32, ndummy.min=16) local({ # test all cases of density.ppp and densityfun.ppp tryit <- function(..., do.fun=TRUE, badones=FALSE) { Z <- density(cells, ..., at="pixels") Z <- density(cells, ..., at="points") if(do.fun) { f <- densityfun(cells, ...) U <- f(0.1, 0.3) if(badones) { U2 <- f(1.1, 0.3) U3 <- f(1.1, 0.3, drop=FALSE) } } return(invisible(NULL)) } if(ALWAYS) { tryit(0.05) tryit(0.05, diggle=TRUE) tryit(0.05, se=TRUE) tryit(0.05, weights=expression(x)) tryit(0.07, kernel="epa") tryit(sigma=Inf) tryit(0.05, badones=TRUE) } if(FULLTEST) { tryit(0.07, kernel="quartic") tryit(0.07, kernel="disc") tryit(0.07, kernel="epa", weights=expression(x)) tryit(sigma=Inf, weights=expression(x)) } V <- diag(c(0.05^2, 0.07^2)) if(ALWAYS) { tryit(varcov=V) } if(FULLTEST) { tryit(varcov=V, diggle=TRUE) tryit(varcov=V, weights=expression(x)) tryit(varcov=V, weights=expression(x), diggle=TRUE) Z <- distmap(runifpoint(5, Window(cells))) tryit(0.05, weights=Z) tryit(0.05, weights=Z, diggle=TRUE) } trymost <- function(...) tryit(..., do.fun=FALSE) wdf <- data.frame(a=1:42,b=42:1) if(ALWAYS) { trymost(0.05, weights=wdf) trymost(sigma=Inf, weights=wdf) } if(FULLTEST) { trymost(0.05, weights=wdf, diggle=TRUE) trymost(varcov=V, weights=wdf) trymost(varcov=V, weights=expression(cbind(x,y))) } ## check conservation of mass checkconserve <- function(X, xname, sigma, toler=0.01) { veritas <- npoints(X) vino <- integral(density(X, sigma, diggle=TRUE)) relerr <- abs(vino - veritas)/veritas if(relerr > toler) stop(paste("density.ppp(diggle=TRUE) fails to conserve mass:", vino, "!=", veritas, "for", sQuote(xname)), call.=FALSE) return(relerr) } if(FULLTEST) { checkconserve(cells, "cells", 0.15) } if(ALWAYS) { checkconserve(split(chorley)[["lung"]], "lung", 2) } ## run C algorithm 'denspt' opa <- spatstat.options(densityC=TRUE, densityTransform=FALSE) if(ALWAYS) { tryit(varcov=V) } if(FULLTEST) { tryit(varcov=V, weights=expression(x)) trymost(varcov=V, weights=wdf) } spatstat.options(opa) crossit <- function(..., sigma=NULL) { U <- runifpoint(20, Window(cells)) a <- densitycrossEngine(cells, U, ..., sigma=sigma) a <- densitycrossEngine(cells, U, ..., sigma=sigma, diggle=TRUE) invisible(NULL) } if(ALWAYS) { crossit(varcov=V, weights=cells$x) crossit(sigma=Inf) } if(FULLTEST) { crossit(varcov=V, weights=wdf) crossit(sigma=0.1, weights=wdf) crossit(sigma=0.1, kernel="epa", weights=wdf) } ## apply different discretisation rules if(ALWAYS) { Z <- density(cells, 0.05, fractional=TRUE) } if(FULLTEST) { Z <- density(cells, 0.05, preserve=TRUE) Z <- density(cells, 0.05, fractional=TRUE, preserve=TRUE) } ## compare results with different algorithms crosscheque <- function(expr) { e <- as.expression(substitute(expr)) ename <- sQuote(deparse(substitute(expr))) ## interpreted R opa <- spatstat.options(densityC=FALSE, densityTransform=FALSE) val.interpreted <- eval(e) ## established C algorithm 'denspt' spatstat.options(densityC=TRUE, densityTransform=FALSE) val.C <- eval(e) ## new C algorithm 'Gdenspt' using transformed coordinates spatstat.options(densityC=TRUE, densityTransform=TRUE) val.Transform <- eval(e) spatstat.options(opa) if(max(abs(val.interpreted - val.C)) > 0.001) stop(paste("Numerical discrepancy between R and C algorithms in", ename)) if(max(abs(val.C - val.Transform)) > 0.001) stop(paste("Numerical discrepancy between C algorithms", "using transformed and untransformed coordinates in", ename)) invisible(NULL) } ## execute & compare results of density(at="points") with different algorithms wdfr <- cbind(1:npoints(redwood), 2) if(ALWAYS) { crosscheque(density(redwood, at="points", sigma=0.13, edge=FALSE)) crosscheque(density(redwood, at="points", sigma=0.13, edge=FALSE, weights=wdfr[,1])) crosscheque(density(redwood, at="points", sigma=0.13, edge=FALSE, weights=wdfr)) } ## correctness of non-Gaussian kernel calculation leavein <- function(ker, maxd=0.025) { ZI <- density(redwood, 0.12, kernel=ker, edge=FALSE, dimyx=256)[redwood] ZP <- density(redwood, 0.12, kernel=ker, edge=FALSE, at="points", leaveoneout=FALSE) discrep <- max(abs(ZP - ZI))/npoints(redwood) if(discrep > maxd) stop(paste("Discrepancy", signif(discrep, 3), "in calculation for", ker, "kernel")) return(invisible(NULL)) } if(ALWAYS) { leavein("epanechnikov", 0.015) } if(FULLTEST) { leavein("quartic", 0.010) leavein("disc", 0.100) } ## bandwidth selection code blocks sigvec <- 0.01 * 2:15 sigran <- range(sigvec) if(ALWAYS) { bw.ppl(redwood, sigma=sigvec) bw.CvL(redwood, sigma=sigvec) } if(FULLTEST) { bw.ppl(redwood, srange=sigran, ns=5) bw.CvL(redwood, srange=sigran, ns=5) } ## adaptive bandwidth if(ALWAYS) { a <- bw.abram(redwood) } if(FULLTEST) { a <- bw.abram(redwood, pilot=density(redwood, 0.2)) a <- bw.abram(redwood, smoother="densityVoronoi", at="pixels") } ## Kinhom if(ALWAYS) { lam <- density(redwood) K <- Kinhom(redwood, lam) lamX <- density(redwood, at="points") KX <- Kinhom(redwood, lamX) } ## test all code cases of new 'relrisk.ppp' algorithm pants <- function(..., X=ants, sigma=100, se=TRUE) { a <- relrisk(X, sigma=sigma, se=se, ...) return(TRUE) } if(ALWAYS) { pants() pants(diggle=TRUE) pants(edge=FALSE) pants(at="points") pants(casecontrol=FALSE) pants(relative=TRUE) pants(sigma=Inf) pants(sigma=NULL, varcov=diag(c(100,100)^2)) f <- 1/area(Window(ants)) pants(fudge=f) } if(FULLTEST) { pants(diggle=TRUE, at="points") pants(edge=FALSE, at="points", fudge=f) pants(casecontrol=FALSE, relative=TRUE) pants(casecontrol=FALSE,at="points") pants(relative=TRUE,at="points", fudge=f) pants(casecontrol=FALSE, relative=TRUE,at="points") pants(relative=TRUE, control="Cataglyphis", case="Messor", fudge=f) pants(relative=TRUE, control="Cataglyphis", case="Messor", at="points") pants(casecontrol=FALSE, case="Messor", se=FALSE) pants(case=2, at="pixels", relative=TRUE) pants(case=2, at="points", relative=TRUE) pants(case=2, at="pixels", relative=FALSE) pants(case=2, at="points", relative=FALSE) } if(ALWAYS) { ## underflow example from stackoverflow! funky <- scanpp("funky.tab", owin(c(4, 38), c(0.3, 17))) P <- relrisk(funky, 0.5) R <- relrisk(funky, 0.5, relative=TRUE) } ## more than 2 types if(ALWAYS) { pants(X=sporophores) pants(X=sporophores, sigma=20, at="points") pants(X=sporophores, sigma=20, at="points", fudge=f) bw.relrisk(sporophores, method="leastsquares") } if(FULLTEST) { pants(X=sporophores, sigma=20, relative=TRUE, at="points", fudge=f) pants(X=sporophores, sigma=20, at="pixels", se=FALSE) pants(X=sporophores, sigma=20, relative=TRUE, at="pixels", se=FALSE) bw.relrisk(sporophores, method="weightedleastsquares") } ## execute Smooth.ppp and Smoothfun.ppp in all cases stroke <- function(..., Y = longleaf, FUN=TRUE) { Z <- Smooth(Y, ..., at="pixels") Z <- Smooth(Y, ..., at="points", leaveoneout=TRUE) Z <- Smooth(Y, ..., at="points", leaveoneout=FALSE) if(FUN) { f <- Smoothfun(Y, ...) f(120, 80) f(Y[1:2]) f(Y[FALSE]) U <- as.im(f) } return(invisible(NULL)) } if(ALWAYS) { stroke() stroke(5, diggle=TRUE) stroke(5, geometric=TRUE) stroke(1e-6) # generates warning about small bandwidth stroke(5, weights=expression(x)) stroke(5, kernel="epa") stroke(sigma=Inf) } if(FULLTEST) { Z <- as.im(function(x,y){abs(x)+1}, Window(longleaf)) stroke(5, weights=Z) stroke(5, weights=runif(npoints(longleaf))) stroke(varcov=diag(c(25, 36))) stroke(varcov=diag(c(25, 36)), weights=runif(npoints(longleaf))) stroke(5, Y=longleaf %mark% 1) stroke(5, Y=cut(longleaf,breaks=3)) stroke(5, weights=Z, geometric=TRUE) g <- function(x,y) { dnorm(x, sd=10) * dnorm(y, sd=10) } stroke(kernel=g, cutoff=30, FUN=FALSE) stroke(kernel=g, cutoff=30, scalekernel=TRUE, sigma=1, FUN=FALSE) } if(FULLTEST) { ## standard errors - single column of marks stroke(sigma=5, se=TRUE) stroke(sigma=5, se=TRUE, loctype="f") w <- runif(npoints(longleaf)) stroke(sigma=5, se=TRUE, weights=w, loctype="r", wtype="i") stroke(sigma=5, se=TRUE, weights=w, loctype="r", wtype="m") stroke(sigma=5, se=TRUE, weights=w, loctype="f", wtype="i") stroke(sigma=5, se=TRUE, weights=w, loctype="f", wtype="m") } niets <- markmean(longleaf, 9) strike <- function(..., Y=finpines) { Z <- Smooth(Y, ..., at="pixels") Z <- Smooth(Y, ..., at="points", leaveoneout=TRUE) Z <- Smooth(Y, ..., at="points", leaveoneout=FALSE) f <- Smoothfun(Y, ...) f(4, 1) f(Y[1:2]) f(Y[FALSE]) U <- as.im(f) return(invisible(NULL)) } if(ALWAYS) { strike() strike(sigma=1.5, kernel="epa") strike(varcov=diag(c(1.2, 2.1))) strike(sigma=1e-6) strike(sigma=Inf) } if(FULLTEST) { strike(sigma=1e-6, kernel="epa") strike(1.5, weights=runif(npoints(finpines))) strike(1.5, weights=expression(y)) strike(1.5, geometric=TRUE) strike(1.5, Y=finpines[FALSE]) flatfin <- finpines %mark% data.frame(a=rep(1, npoints(finpines)), b=2) strike(1.5, Y=flatfin) strike(1.5, Y=flatfin, geometric=TRUE) } if(FULLTEST) { ## standard errors - multivariate marks strike(sigma=1.5, se=TRUE) strike(sigma=1.5, se=TRUE, loctype="f") w <- runif(npoints(finpines)) strike(sigma=1.5, se=TRUE, weights=w, loctype="r", wtype="i") strike(sigma=1.5, se=TRUE, weights=w, loctype="r", wtype="m") strike(sigma=1.5, se=TRUE, weights=w, loctype="f", wtype="i") strike(sigma=1.5, se=TRUE, weights=w, loctype="f", wtype="m") } opx <- spatstat.options(densityTransform=FALSE) if(ALWAYS) { stroke(5, Y=longleaf[order(longleaf$x)], sorted=TRUE) } if(FULLTEST) { strike(1.5, Y=finpines[order(finpines$x)], sorted=TRUE) } spatstat.options(opx) ## detect special cases if(ALWAYS) { Smooth(longleaf[FALSE]) Smooth(longleaf, minnndist(longleaf)) Xconst <- cells %mark% 1 Smooth(Xconst, 0.1) Smooth(Xconst, 0.1, at="points") Smooth(cells %mark% runif(42), sigma=Inf) Smooth(cells %mark% runif(42), sigma=Inf, at="points") Smooth(cells %mark% runif(42), sigma=Inf, at="points", leaveoneout=FALSE) Smooth(cut(longleaf, breaks=4)) } ## code not otherwise reached if(ALWAYS) { smoothpointsEngine(cells, values=rep(1, npoints(cells)), sigma=0.2) } if(FULLTEST) { smoothpointsEngine(cells, values=runif(npoints(cells)), sigma=Inf) smoothpointsEngine(cells, values=runif(npoints(cells)), sigma=1e-16) } ## validity of Smooth.ppp(at='points') Y <- longleaf %mark% runif(npoints(longleaf), min=41, max=43) Z <- Smooth(Y, 5, at="points", leaveoneout=TRUE) rZ <- range(Z) if(rZ[1] < 40 || rZ[2] > 44) stop("Implausible results from Smooth.ppp(at=points, leaveoneout=TRUE)") Z <- Smooth(Y, 5, at="points", leaveoneout=FALSE) rZ <- range(Z) if(rZ[1] < 40 || rZ[2] > 44) stop("Implausible results from Smooth.ppp(at=points, leaveoneout=FALSE)") ## compare Smooth.ppp results with different algorithms if(ALWAYS) { crosscheque(Smooth(longleaf, at="points", sigma=6)) wt <- runif(npoints(longleaf)) crosscheque(Smooth(longleaf, at="points", sigma=6, weights=wt)) } if(FULLTEST) { vc <- diag(c(25,36)) crosscheque(Smooth(longleaf, at="points", varcov=vc)) crosscheque(Smooth(longleaf, at="points", varcov=vc, weights=wt)) } ## drop-dimension coding errors if(FULLTEST) { X <- longleaf marks(X) <- cbind(marks(X), 1) Z <- Smooth(X, 5) ZZ <- bw.smoothppp(finpines, hmin=0.01, hmax=0.012, nh=2) # reshaping problem } ## geometric-mean smoothing if(ALWAYS) { U <- Smooth(longleaf, 5, geometric=TRUE) } if(FULLTEST) { UU <- Smooth(X, 5, geometric=TRUE) V <- Smooth(longleaf, 5, geometric=TRUE, at="points") VV <- Smooth(X, 5, geometric=TRUE, at="points") } }) reset.spatstat.options() local({ if(ALWAYS) { #' Kmeasure, second.moment.engine #' Expansion of window Zno <- Kmeasure(redwood, sigma=0.2, expand=FALSE) Zyes <- Kmeasure(redwood, sigma=0.2, expand=TRUE) #' All code blocks sigmadouble <- rep(0.1, 2) diagmat <- diag(sigmadouble^2) generalmat <- matrix(c(1, 0.5, 0.5, 1)/100, 2, 2) Z <- Kmeasure(redwood, sigma=sigmadouble) Z <- Kmeasure(redwood, varcov=diagmat) Z <- Kmeasure(redwood, varcov=generalmat) A <- second.moment.calc(redwood, 0.1, what="all", debug=TRUE) B <- second.moment.calc(redwood, varcov=diagmat, what="all") B <- second.moment.calc(redwood, varcov=diagmat, what="all") D <- second.moment.calc(redwood, varcov=generalmat, what="all") PR <- pixellate(redwood) DRno <- second.moment.calc(PR, 0.2, debug=TRUE, expand=FALSE, npts=npoints(redwood), obswin=Window(redwood)) DRyes <- second.moment.calc(PR, 0.2, debug=TRUE, expand=TRUE, npts=npoints(redwood), obswin=Window(redwood)) DR2 <- second.moment.calc(solist(PR, PR), 0.2, debug=TRUE, expand=TRUE, npts=npoints(redwood), obswin=Window(redwood)) Gmat <- generalmat * 100 isoGauss <- function(x,y) {dnorm(x) * dnorm(y)} ee <- evaluate2Dkernel(isoGauss, runif(10), runif(10), varcov=Gmat, scalekernel=TRUE) isoGaussIm <- as.im(isoGauss, square(c(-3,3))) gg <- evaluate2Dkernel(isoGaussIm, runif(10), runif(10), varcov=Gmat, scalekernel=TRUE) ## experimental code op <- spatstat.options(developer=TRUE) DR <- density(redwood, 0.1) spatstat.options(op) } }) local({ if(FULLTEST) { #' bandwidth selection op <- spatstat.options(n.bandwidth=8) bw.diggle(cells) bw.diggle(cells, method="interpreted") # undocumented test ## bw.relrisk(urkiola, hmax=20) is tested in man/bw.relrisk.Rd bw.relrisk(urkiola, hmax=20, method="leastsquares") bw.relrisk(urkiola, hmax=20, method="weightedleastsquares") ZX <- density(swedishpines, at="points") bw.pcf(swedishpines, lambda=ZX) bw.pcf(swedishpines, lambda=ZX, bias.correct=FALSE, simple=FALSE, cv.method="leastSQ") spatstat.options(op) } }) local({ if(FULLTEST) { ## FOR EXCISION #' code in kernels.R kernames <- c("gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine", "optcosine") X <- rnorm(20) U <- runif(20) for(ker in kernames) { dX <- dkernel(X, ker) fX <- pkernel(X, ker) qU <- qkernel(U, ker) m0 <- kernel.moment(0, 0, ker) m1 <- kernel.moment(1, 0, ker) m2 <- kernel.moment(2, 0, ker) m3 <- kernel.moment(3, 0, ker) } } }) local({ if(FULLTEST) { ## idw Z <- idw(longleaf, power=4) Z <- idw(longleaf, power=4, se=TRUE) ZX <- idw(longleaf, power=4, at="points") ZX <- idw(longleaf, power=4, at="points", se=TRUE) } if(ALWAYS) { ## former bug in densityVoronoi.ppp X <- redwood[1:2] A <- densityVoronoi(X, f=0.51, counting=FALSE, fixed=FALSE, nrep=50, verbose=FALSE) ## dodgy code blocks in densityVoronoi.R A <- adaptive.density(nztrees, nrep=2, f=0.5, counting=TRUE) B <- adaptive.density(nztrees, nrep=2, f=0.5, counting=TRUE, fixed=TRUE) D <- adaptive.density(nztrees, nrep=2, f=0.5, counting=FALSE) E <- adaptive.density(nztrees, nrep=2, f=0.5, counting=FALSE, fixed=TRUE) } if(FULLTEST) { #' adaptive kernel estimation d10 <- nndist(nztrees, k=10) d10fun <- distfun(nztrees, k=10) d10im <- as.im(d10fun) uN <- 2 * runif(npoints(nztrees)) AA <- densityAdaptiveKernel(nztrees, bw=d10) BB <- densityAdaptiveKernel(nztrees, bw=d10, weights=uN) DD <- densityAdaptiveKernel(nztrees, bw=d10fun, weights=uN) EE <- densityAdaptiveKernel(nztrees, bw=d10im, weights=uN) } }) local({ if(ALWAYS) { ## FOR EXCISION ## unnormdensity x <- rnorm(20) d0 <- unnormdensity(x, weights=rep(0, 20)) dneg <- unnormdensity(x, weights=c(-runif(19), 0)) } if(FULLTEST) { ## cases of 'intensity' etc a <- intensity(amacrine, weights=expression(x)) SA <- split(amacrine) a <- intensity(SA, weights=expression(x)) a <- intensity(SA, weights=amacrine$x) ## check infrastructure for 'densityfun' f <- densityfun(cells, 0.05) Z <- as.im(f) Z <- as.im(f, W=square(0.5)) } }) reset.spatstat.options()