# # Make sure we honor the choice of xmin when predicting values after fitting distributions # test_that("xmin is used when predicting values", { # This can produce warnings, but it is not what we want to test here so we suppress # them # Test for single-element run of patchdistr_sews suppressWarnings({ a <- patchdistr_sews(serengeti[[12]], xmin = 1) preds <- predict(a)[["pred"]] }) expect_true({ abs(max(preds[ ,"y"], na.rm = TRUE) - 1) < 1e-8 }) # Test for single-element run of patchdistr_sews, now with xmin suppressWarnings({ a <- patchdistr_sews(serengeti[[12]], xmin = 10) }) preds <- predict(a, xmin_rescale = TRUE)[["pred"]] # should be rescaled so that different from 1 expect_true({ abs(max(preds[ ,"y"], na.rm = TRUE) - 1) > 0.1 }) # Test for multiple-matrix run of patchdistr_sews suppressWarnings({ a <- patchdistr_sews(serengeti[11:12], xmin = 1) }) preds <- predict(a)[["pred"]] expect_true({ abs(max(preds[ ,"y"], na.rm = TRUE) - 1) < 1e-8 }) # Test for multiple-matrix run of patchdistr_sews suppressWarnings({ a <- patchdistr_sews(serengeti[11:12], xmin = 10) }) preds <- predict(a, xmin_rescale = TRUE)[["pred"]] expect_true({ abs(max(preds[ ,"y"], na.rm = TRUE) - 1) > 0.1 }) })