cat(crayon::yellow("\ntest old examples and new tests:\n")) # spaMM data("scotlip") ## loads 'scotlip' data frame, but also 'Nmatrix' # including a test of mgcv::negbin handling mechanism # and apparently there are not so many tests of .solve_v_h_IRLS() in routine tests. (hl <- try(fitme(I(1+cases)~I(prop.ag/10)+offset(log(expec))+adjacency(1|gridcode), family=negbin(), adjMatrix=Nmatrix, data=scotlip), silent=TRUE)) if (inherits(hl,"try-error")) { if (length(grep("mgcv",attr(hl,"condition")$message))) { message(".checkRespFam() detected that spaMM::negbin is masked by mgcv::negbin. Refitting as part of tests...") (hl <- try(fitme(I(1+cases)~I(prop.ag/10)+offset(log(expec))+adjacency(1|gridcode), family=spaMM::negbin(), adjMatrix=Nmatrix, data=scotlip))) } else stop(hl) # other unhandled error } (hl1 <- corrHLfit(cases~I(prop.ag/10) +adjacency(1|gridcode)+offset(log(expec)), data=scotlip,family=poisson(), adjMatrix=Nmatrix)) ## 1D optimization -> optimize testthat::expect_equal(hl1$APHLs$p_v,-161.5140,tolerance=1e-4) (hl2 <- HLCor(cases~I(prop.ag/10) +adjacency(1|gridcode)+offset(log(expec)), data=scotlip,family=poisson(), adjMatrix=Nmatrix)) testthat::expect_equal(hl2$APHLs$p_v,-161.5141,tolerance=1e-4) testthat::expect_true(diff(range(AIC(hl2,verbose=FALSE)-AIC(hl1,verbose=FALSE)))<1e-2) data("salamander") hl <- HLfit(cbind(Mate,1-Mate)~1+(1|Female)+(1|Male),family=binomial(), rand.family=list(gaussian(),Beta(logit)),data=salamander,HLmethod="ML",control.HLfit = list(LevenbergM=FALSE)) testthat::expect_equal(hl$APHLs$p_v,-238.715,tolerance=1e-3) ## Nested effects # lmer syntax allowing several degrees of nesting hl <- HLfit(cbind(Mate,1-Mate)~1+(1|Female/Male), family=binomial(),rand.family=Beta(logit),data=salamander,HLmethod="ML",control.HLfit = list(LevenbergM=FALSE)) testthat::expect_equal(hl$APHLs$p_v,-243.6668,tolerance=1e-4) # A syntax described in ?formula ## removed from the example() hl <- HLfit(cbind(Mate,1-Mate)~1+(1|Female)+(1|Male %in% Female), ranFix=list(lambda=c('Female' = 0.127517,'Male %in% Female' = 4.64595e-07)), family=binomial(),rand.family=Beta(logit),data=salamander,HLmethod="ML",control.HLfit = list(LevenbergM=FALSE)) testthat::expect_equal(hl$APHLs$p_v,-243.6668,tolerance=1e-4) ### check NULL auglinmodblob d <- data.frame(y = 1:10) summary(fitme(y ~ 0, data = d)) # test of scaling of ranCoef predictor (ranSlope1 <- fitme(I(1+cases)~I(prop.ag/10)+adjacency(0+expec|gridcode), family=poisson(), adjMatrix=Nmatrix, data=scotlip)) scotlip$verif <- scotlip$expec/2 (ranSlope2 <- fitme(I(1+cases)~I(prop.ag/10)+adjacency(0+verif|gridcode), family=poisson(), adjMatrix=Nmatrix, data=scotlip)) testthat::expect_true(abs(ranSlope2$lambda-4*ranSlope1$lambda)<1e-5) # test dfs data("wafers") testthat::expect_true(sum(unlist(HLfit(y~X1+(X2|batch), data=wafers)$dfs))==6L) # 3 df in p_lambda for ranCoefs testthat::expect_true(sum(unlist(fitme(y~X1+(X2|batch)+(X2|batch), # stupid formula but effective test data=wafers, fixed=list(ranCoefs=list("1"=c(NA, -0.1, NA))))$dfs))==8L) # 5 df in p_lambda for ranCoefs # check with mixed inner and outer-estimated ranefs (=> bug before v3.12.4): testthat::expect_true(fitme(y~X1+(X2|batch)+(1|batch), data=wafers, fixed=list(ranCoefs=list("1"=c(NA, -0.1, NA))))$dfs$p_lambda==3L) # 2 df in p_lambda for ranCoefs testthat::expect_true(fitme(y~X1+(X2|batch)+(1|batch), data=wafers)$dfs$p_lambda==4L) # 3 df in p_lambda for ranCoefs # testthat::expect_true(HLfit(y~X1+(X2|batch)+(1|batch), data=wafers)$dfs$p_lambda==4L) # 3 df in p_lambda for ranCoefs (slow) if (FALSE) { # examples from update.Rd in handy test form ## First the fit to be updated: wFit <- HLfit(y ~X1*X3+X2*X3+I(X2^2)+(1|batch),family=Gamma(log), resid.model = ~ X3+I(X3^2) ,data=wafers) newresp <- simulate(wFit) update_resp(wFit,newresp=newresp) # For estimates given by Lee et al., Appl. Stochastic Models Bus. Ind. (2011) 27: 315-328: # Refit with given beta or/and phi values: betavals <- c(5.55,0.08,-0.14,-0.21,-0.08,-0.09,-0.09) # reconstruct fitted phi value from predictor for log(phi) Xphi <- with(wafers,cbind(1,X3,X3^2)) ## design matrix phifit <- exp(Xphi %*% c(-2.90,0.1,0.95)) upd_wafers <- wafers upd_wafers$off_b <- wFit$`X.pv` %*% betavals update(wFit,formula.= . ~ offset(off_b)+(1|batch), data=upd_wafers, ranFix=list(lambda=exp(-3.67),phi=phifit)) ## There are subtlety in performing REML fits of constrained models, ## illustrated by the fact that the following fit does not recover ## the original likelihood values, because dispersion parameters are ## estimated but the REML correction changes with the formula: upd_wafers$off_f <- wFit$`X.pv` %*% fixef(wFit) ## = predict(wFit,re.form=NA,type="link") (diffwFit <- update(wFit,formula.= . ~ offset(off_f)+(1|batch), data=upd_wafers)) testthat::expect_equal(logLik(diffwFit),c(p_bv=-1159.594584758636)) ## To maintain the original REML correction, Consider instead (rewFit <- update(wFit,formula.= . ~ offset(off_f)+(1|batch), data=upd_wafers, REMLformula=formula(wFit))) ## recover original p_v and p_bv testthat::expect_true(diff(range(unlist(wFit$APHLs)-unlist(rewFit$APHLs)))<1e-4) ## Alternatively, show original wFit as differences from betavals: (rerewFit <- update(wFit,formula.= . ~ . +offset(off_f), data=upd_wafers)) testthat::expect_true(diff(range(fixef(rerewFit)))<1e-14) } { # check of REMLformula and keepInREML l1 <- logLik(unconstr <- fitme(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch), data=wafers, family=Gamma(log), method="REML")) l2 <- logLik(fitme(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch), data=wafers, family=Gamma(log), method="REML", etaFix=list(beta=structure(fixef(unconstr), keepInREML=TRUE)))) testthat::test_that("whether keepInREML uses model formula as default REMLformula",testthat::expect_true(l1-l2<1e-14)) l3 <- logLik(suppressMessages(fitme(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch), data=wafers, family=Gamma(log), method="REML", etaFix=list(beta=structure(fixef(unconstr), keepInREML=TRUE)), REMLformula=y ~(1|batch)))) l4 <- logLik(fitme(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch), data=wafers, family=Gamma(log), method="ML")) testthat::test_that("whether keepInREML correctly handles nondefault REMLformula", testthat::expect_true(l3-l4<1e-14)) } # Code added to check model frame issues when updating a model with variable in resid model not in mean response model (+ syntax I() ). data("wafers") ## Gamma GLMM with log link m1 <- HLfit(y ~X1+X2+I(X2^2),family=Gamma(log), resid.model = ~ X3+I(X3^2) ,data=wafers,method="ML") update_resp(m1,newresp=simulate(m1)) # residual dispersion model with partial etaFix (wfit <- fitme(y ~ X1+X2+X1*X3+X2*X3+I(X2^2), family=Gamma(log), rand.family=inverse.Gamma(log), resid.model = list(formula= ~ X3+I(X3^2)+(1|batch), fixed=list(lambda=0.4), # let's check that too etaFix=list(beta=c("(Intercept)"=-2.93))) , data=wafers)) testthat::test_that("whether partially-fixed etaFix works in resid.model", testthat::expect_equal(fixef(wfit$resid_fit)[[1L]],-2.93)) testthat::test_that("whether fixed lambda works in resid.model", testthat::expect_equal((wfit$resid_fit$lambda)[[1L]],0.4)) # Handling of ~ . : testthat::test_that( "Warning expected for ~ . ", { warn <- "" withCallingHandlers( fitme(Sepal.Length ~ . -Species + (1|Species), data=iris), warning=function(w) { warn <<- conditionMessage(w) invokeRestart("muffleWarning") }) testthat::expect_true( warn=="It looks like there is a '.' in the RHS of the formula.\n Fitting may be successful, but post-fit functions such as predict() will fail." )} ) # Handling of ~ . : testthat::test_that( "Warning expected for Earth + .(.|latitude+longitude) ", { warn <- "" withCallingHandlers( fitme(migStatus ~ 1 + Matern(1|latitude+longitude),data=blackcap, method="ML", fixed=list(nu=0.5,phi=1e-6), control.dist=list(dist.method="Earth")), warning=function(w) { warn <<- conditionMessage(w) invokeRestart("muffleWarning") }) testthat::expect_true( warn=="Hmm... the first coordinate should be longitude, but seems to be latitude." )} )