cat(crayon::yellow("\ntest obsInfo:")) # data("Salamanders", package = "glmmTMB") # (foo <- fitme(count ~ spp * mined + (1 |site), data=Salamanders, family=negbin(link=log), method=c("ML","obs"), verbose=c(TRACE=F))) # testthat::expect_equal(logLik(foo), c(p_v=-815.678491998 )) data(scotlip) (foo <- fitme(cases ~ I(prop.ag/10)+(1|gridcode), family=negbin(link=log), data=scotlip, method=c("ML","obs"))) testthat::expect_equal(logLik(foo), c(P_v=-181.60802361 )) data(wafers) (foo <- fitme(y ~1+(1|batch),family=Gamma(log), #fixed=list(lambda=c("1"=0.01213306), phi=0.2255785), data=wafers,method=c("ML","obs"), verbose=c(TRACE=F))) testthat::expect_equal(logLik(foo), c(P_v=-1224.65219293 )) { data("clinics") (foo <- fitme(cbind(npos,nneg)~1+(1|clinic), method=c("ML","obs"), family=binomial(cloglog),data=clinics)) testthat::expect_equal(logLik(foo), c(P_v=-40.4244068868)) } { data("wafers") me <- fitme(y ~ 1+(1|batch), family=Gamma(log), data=wafers) set.seed(123) y2 <- simulate(me, type="residual") wafmv <- wafers wafmv$batch2 <- wafmv$batch wafmv$y2 <- y2 wafmv$ly <- log(wafmv$y) wafmv$y3 <- log(y2) (me1 <- fitme(formula=ly ~ 1+(1|batch), family=Gamma(log), method=c("ML","obs"), data=wafmv)) (me2 <- fitme(formula=y3 ~ 1+(1|batch2), family=Gamma(log), method=c("ML","obs"), data=wafmv)) (zut1 <- fitmv(submodels=list(mod1=list(formula=ly ~ 1+(1|batch), family=Gamma(log)), mod2=list(formula=y3 ~ 1+(1|batch2), family=Gamma(log))), method=c("ML","obs"), data=wafmv)) testthat::expect_true(diff(range(logLik(me1)+logLik(me2),logLik(zut1)))<1e-5) testthat::expect_true(diff(range( predict(zut1, newdata=zut1$data)-predict(zut1)))<1e-14) testthat::expect_true(diff(range( get_predVar(zut1, newdata=zut1$data)-get_predVar(zut1)))<1e-14) update_resp(zut1,newresp = simulate(zut1)) } if (spaMM.getOption("example_maxtime")>3) { data("scotlip") adjfit <- fitmv(submodels=list(mod1=list(formula=cases~I(prop.ag/10) +adjacency(1|gridcode)+offset(log(expec)),family=poisson()), mod2=list(formula=cases~I(prop.ag/10) +(1|gridcode)+offset(log(expec)),family=poisson(),rand.family=list(Gamma(log)))), adjMatrix=Nmatrix,data=scotlip) std_lev <- hatvalues(adjfit, type="std", force=TRUE, which="both") testthat::test_that("Whether hatvalues() works on mv fit moreover, with obsInfo)", testthat::expect_true(diff(range(c(std_lev$ranef -adjfit$lev_lam,std_lev$resid -adjfit$lev_phi)))<1e-14) ) }