context('vignette') test_that('vignette', { gds_path <- save_hgdp_as_gds() gdata <- load_gds_as_genotype_data(gds_path) qc <- snprelate_qc(gdata, tagsnp = .99) tex_table = capture.output(print_qc_as_tex_table(qc)) expect_true(length(tex_table) > 0) snp_idxs_hladr <- select_region_idxs(qc$gdata, chromosome = 6, position_min = 32.5e6, n_snps = 20, offset = 9) # qc$gdata <- gdata_add_gene_annots(qc$gdata, snp_idxs_hladr) qc$gdata <- gdata_add_gene_annots_hladr_example(qc$gdata, snp_idxs_hladr) plt <- gtable_ld_gdata(qc$gdata, snp_idxs_hladr, labels_colname = 'gene') expect_is(plt, 'gtable') snp_idxs_mhc <- select_region_idxs(qc$gdata, chromosome = 6, position_min = 29e6, position_max = 33e6) df_assocs <- chisq_pvalues_gdata(qc$gdata, snp_idxs_mhc) df_top_aim <- subset(df_assocs, rank(-pvalues, ties.method = 'first') <= 20) #qc$gdata <- gdata_add_gene_annots(qc$gdata, rownames(df_top_aim)) qc$gdata <- gdata_add_gene_annots_aim_example(qc$gdata, rownames(df_top_aim)) plt <- gtable_ld_associations_gdata(df_top_aim, qc$gdata, labels_colname = 'gene') expect_is(plt, 'gtable') plt <- gtable_ld_associations_gdata(df_assocs, qc$gdata, labels_colname = 'gene') expect_is(plt, 'gtable') })