# This unit test script makes sure that a trivially simple slendr model gives exactly the same # result (i.e. tree sequence tables) after loading than a pure SLiM script skip_if(!is_slendr_env_present()) init_env(quiet = TRUE) # total length of the test simulation run T <- 10000 # number of individuals in a populations N <- 2000 # run a slendr simulation ------------------------------------------------- pop <- population("pop", time = 1, N = N) model <- compile_model(pop, generation_time = 1, direction = "forward", simulation_length = T) ts1 <- slim(model, method = "batch", sequence_length = 1, recombination_rate = 0, random_seed = 42, verbose = FALSE) # run a pure SLiM version of the same model ------------------------------- simulate_slim_ts <- function(N, T, output, script_file , verbose = FALSE) { script_file <- normalizePath(tempfile(), winslash = "/", mustWork = FALSE) output <- normalizePath(tempfile(), winslash = "/", mustWork = FALSE) writeLines(sprintf('initialize() { setSeed(42); initializeSLiMOptions(keepPedigrees = T); initializeTreeSeq(retainCoalescentOnly=T); initializeMutationType(0, 0.5, "f", 0); initializeGenomicElementType(1, m0, 1); initializeGenomicElement(g1, 0, 0); initializeMutationRate(0); initializeRecombinationRate(0); } 1 late() { sim.addSubpop("p0", %d); } %s late() { inds = sample(sim.subpopulations.individuals, %s); sim.treeSeqRememberIndividuals(inds, permanent = T); } 1: late() { sim.treeSeqRememberIndividuals(sim.subpopulations.individuals, permanent = F); } %s late() { sim.treeSeqOutput("%s"); catn(community.tick + "finished"); } 2: fitnessEffect() /* Compute fitness of individuals */ { return 1.0; interaction = community.allInteractionTypes[2 * subpop.id]; // this must be here otherwise the test breaks } ', N, T + 1, N, T + 1, output), script_file) if (Sys.info()["sysname"] == "Windows") binary <- "slim.exe" else binary <- "slim" out <- system2(binary, script_file, stdout = TRUE) if (verbose) cat(paste(out, collapse = "\n")) ts_load(output) } ts2 <- simulate_slim_ts(N, T, verbose = FALSE) # load tree sequences, extract tables ------------------------------------- shared_cols <- c("node_id", "time_tskit", "remembered", "retained", "alive", "pedigree_id", "pop_id", "ind_id") table1 <- ts_nodes(ts1) %>% dplyr::arrange(pedigree_id) %>% .[, shared_cols] %>% as.data.frame() table2 <- ts_nodes(ts2) %>% dplyr::arrange(pedigree_id) %>% .[, shared_cols] %>% as.data.frame() test_that("pure SLiM and slendr versions of the same model give the same node/ind table", { expect_true(all(table1 == table2)) }) test_that("pure SLiM and slendr versions of the same model give the same phylo object", { t1 <- ts_recapitate(ts1, Ne = N, recombination_rate = 0, random_seed = 42) %>% ts_simplify() %>% ts_phylo(0, quiet = TRUE) t2 <- ts_recapitate(ts1, Ne = N, recombination_rate = 0, random_seed = 42) %>% ts_simplify() %>% ts_phylo(0, quiet = TRUE) # plot(t1) # plot(t2) expect_equal(t1$edge, t2$edge) expect_equal(t1$edge.length, t2$edge.length) expect_equal(t1$node.label, t2$node.label) expect_equal(t1$Nnode, t2$Nnode) }) # simplification tests (after introducing constant tracking of names of sampled individuals) test_that("simplification on pure SLiM tree sequence retains the correct data", { tmp_small <- tempfile() suppressWarnings(ts_small <- ts_simplify(ts2, simplify_to = c(0, 42, 100, 256))) ts_save(ts_small, tmp_small) ts_small_loaded <- ts_load(tmp_small) expect_equal(ts_nodes(ts_small_loaded) %>% dplyr::filter(sampled) %>% nrow, 4) # for a mysterious reason not worth investigating right now, the last two # columns of ts_nodes (ind_id, pop_id) are flipped between ts_small and ts_small_loaded, # so let's compare the ts_nodes contents by explicitly ordered columns cols <- c("pop", "node_id", "time", "time_tskit", "sampled", "remembered", "retained", "alive", "pedigree_id", "ind_id", "pop_id") expect_equal(ts_nodes(ts_small)[, cols], ts_nodes(ts_small_loaded)[, cols]) })