# This long script generates from simple slendr models: # - constant N # - step reduction of N # - step increase of N # - exponential increase of N # - exponential decrease of N # # Those models are configured in both forward and backward time specifications, # so each model is specified twice. # # It then runs those slendr model configurations through both SLiM and msprime # backends bundled with the slendr R package. Finally, an allele frequency # spectrum is estimated from tree sequence files saved by both backends for # each model variant (forward and backward). The AFS are then compared for each # of the two backends and we make sure that forward and backward configurations # of the same model give *exactly* the same AFS (it has to be exactly the same # because it is, in fact, generated from the same theoretical model). Then, we # also compare the AFS between SLiM and msprime runs for the same model # configuration. These won't be exactly the same (the tree sequences are # generated by two completely different pieces of software after all - SLiM # and msprime Python library), but they should be *nearly* the same. skip_if(!is_slendr_env_present()) init_env(quiet = TRUE) seed <- 42 N <- 1000 N_factor <- 5 n_samples <- 50 seq_len <- 100e6 rec_rate <- 1e-8 mut_rate <- 1e-8 # constant population size models - forward and backward direction, SLiM and msprime forward_const_dir <- file.path(tempdir(), "forward_const") forward_const_pop <- population("forward_const_pop", time = 1, N = N, map = FALSE) forward_const_model <- compile_model(forward_const_pop, forward_const_dir, generation_time = 1, overwrite = TRUE, force = TRUE, direction = "forward", simulation_length = 5000) forward_const_samples <- schedule_sampling(forward_const_model, times = 5001, list(forward_const_pop, n_samples)) backward_const_dir <- file.path(tempdir(), "backward_const") backward_const_pop <- population("backward_const_pop", time = 5000, N = N, map = FALSE) backward_const_model <- compile_model(backward_const_pop, backward_const_dir , generation_time = 1, overwrite = TRUE, force = TRUE, direction = "backward") backward_const_samples <- schedule_sampling(backward_const_model, times = 0, list(backward_const_pop, n_samples)) const_ts <- run_slim_msprime( forward_const_model, backward_const_model, forward_const_samples, backward_const_samples, seq_len, rec_rate, seed, verbose = FALSE ) # population size contraction models - forward and backward direction, SLiM and msprime forward_contr_dir <- file.path(tempdir(), "forward_contr") forward_contr_pop <- population("forward_contr_pop", time = 1, N = N, map = FALSE) %>% resize(time = 2001, N = N / N_factor, how = "step") forward_contr_model <- compile_model(forward_contr_pop, forward_contr_dir, generation_time = 1, overwrite = TRUE, force = TRUE, direction = "forward", simulation_length = 5000) forward_contr_samples <- schedule_sampling(forward_contr_model, times = 5001, list(forward_contr_pop, n_samples)) backward_contr_dir <- file.path(tempdir(), "backward_contr") backward_contr_pop <- population("backward_contr_pop", time = 5000, N = N, map = FALSE) %>% resize(time = 3000, N = N / N_factor, how = "step") backward_contr_model <- compile_model(backward_contr_pop, backward_contr_dir, generation_time = 1, overwrite = TRUE, force = TRUE, direction = "backward") backward_contr_samples <- schedule_sampling(backward_contr_model, times = 0, list(backward_contr_pop, n_samples)) contr_ts <- run_slim_msprime( forward_contr_model, backward_contr_model, forward_contr_samples, backward_contr_samples, seq_len, rec_rate, seed, verbose = FALSE ) # population size increase models - forward and backward direction, SLiM and msprime forward_expansion_dir <- file.path(tempdir(), "forward_expansion") forward_expansion_pop <- population("forward_expansion_pop", time = 1, N = N, map = FALSE) %>% resize(time = 2001, N = N * N_factor, how = "step") forward_expansion_model <- compile_model(forward_expansion_pop, forward_expansion_dir, generation_time = 1, overwrite = TRUE, force = TRUE, direction = "forward", simulation_length = 5000) forward_expansion_samples <- schedule_sampling(forward_expansion_model, times = 5001, list(forward_expansion_pop, n_samples)) backward_expansion_dir <- file.path(tempdir(), "backward_expansion") backward_expansion_pop <- population("backward_expansion_pop", time = 5000, N = N, map = FALSE) %>% resize(time = 3000, N = N * N_factor, how = "step") backward_expansion_model <- compile_model(backward_expansion_pop, backward_expansion_dir, generation_time = 1, overwrite = TRUE, force = TRUE, direction = "backward") backward_expansion_samples <- schedule_sampling(backward_expansion_model, times = 0, list(backward_expansion_pop, n_samples)) expansion_ts <- run_slim_msprime( forward_expansion_model, backward_expansion_model, forward_expansion_samples, backward_expansion_samples, seq_len, rec_rate, seed, verbose = FALSE ) # exponential increase models - forward and backward direction, SLiM and msprime forward_exp_inc_dir <- file.path(tempdir(), "forward_exp_inc") forward_exp_inc_pop <- population("forward_exp_inc_pop", time = 1, N = N / N_factor, map = FALSE) %>% resize(time = 2001, end = 3001, N = N, how = "exponential") forward_exp_inc_model <- compile_model(forward_exp_inc_pop, forward_exp_inc_dir, generation_time = 1, overwrite = TRUE, force = TRUE, direction = "forward", simulation_length = 5000) forward_exp_inc_samples <- schedule_sampling(forward_exp_inc_model, times = 5001, list(forward_exp_inc_pop, n_samples)) backward_exp_inc_dir <- file.path(tempdir(), "backward_exp_inc") backward_exp_inc_pop <- population("backward_exp_inc_pop", time = 1, N = N / N_factor, map = FALSE) %>% resize(time = 2001, end = 3001, N = N, how = "exponential") backward_exp_inc_model <- compile_model(backward_exp_inc_pop, backward_exp_inc_dir, generation_time = 1, overwrite = TRUE, force = TRUE, direction = "forward", simulation_length = 5000) backward_exp_inc_samples <- schedule_sampling(backward_exp_inc_model, times = 5001, list(backward_exp_inc_pop, n_samples)) exp_inc_ts <- run_slim_msprime( forward_exp_inc_model, backward_exp_inc_model, forward_exp_inc_samples, backward_exp_inc_samples, seq_len, rec_rate, seed, verbose = FALSE ) # exponential decrease models - forward and backward direction, SLiM and msprime forward_exp_decr_dir <- file.path(tempdir(), "forward_exp_decr") forward_exp_decr_pop <- population("forward_exp_decr_pop", time = 1, N = N, map = FALSE) %>% resize(time = 2001, end = 3001, N = N / N_factor, how = "exponential") forward_exp_decr_model <- compile_model(forward_exp_decr_pop, forward_exp_decr_dir, generation_time = 1, overwrite = TRUE, force = TRUE, direction = "forward", simulation_length = 5000) forward_exp_decr_samples <- schedule_sampling(forward_exp_decr_model, times = 5001, list(forward_exp_decr_pop, n_samples)) backward_exp_decr_dir <- file.path(tempdir(), "backward_exp_decr") backward_exp_decr_pop <- population("backward_exp_decr_pop", time = 1, N = N, map = FALSE) %>% resize(time = 2001, end = 3001, N = N / N_factor, how = "exponential") backward_exp_decr_model <- compile_model(backward_exp_decr_pop, backward_exp_decr_dir, generation_time = 1, overwrite = TRUE, force = TRUE, direction = "forward", simulation_length = 5000) backward_exp_decr_samples <- schedule_sampling(backward_exp_decr_model, times = 5001, list(backward_exp_decr_pop, n_samples)) exp_decr_ts <- run_slim_msprime( forward_exp_decr_model, backward_exp_decr_model, forward_exp_decr_samples, backward_exp_decr_samples, seq_len, rec_rate, seed, verbose = FALSE ) # load tree sequence files from msprime msprime_forward_const_ts <- load_tree_sequence("msprime", "forward", const_ts, forward_const_model, N, rec_rate, mut_rate, seed) msprime_backward_const_ts <- load_tree_sequence("msprime", "backward", const_ts, backward_const_model, N, rec_rate, mut_rate, seed) msprime_forward_contr_ts <- load_tree_sequence("msprime", "forward", contr_ts, forward_contr_model, N, rec_rate, mut_rate, seed) msprime_backward_contr_ts <- load_tree_sequence("msprime", "backward", contr_ts, backward_contr_model, N, rec_rate, mut_rate, seed) msprime_forward_expansion_ts <- load_tree_sequence("msprime", "forward", expansion_ts, forward_expansion_model, N, rec_rate, mut_rate, seed) msprime_backward_expansion_ts <- load_tree_sequence("msprime", "backward", expansion_ts, backward_expansion_model, N, rec_rate, mut_rate, seed) msprime_forward_exp_inc_ts <- load_tree_sequence("msprime", "forward", exp_inc_ts, forward_exp_inc_model, N, rec_rate, mut_rate, seed) msprime_backward_exp_inc_ts <- load_tree_sequence("msprime", "backward", exp_inc_ts, backward_exp_inc_model, N, rec_rate, mut_rate, seed) msprime_forward_exp_decr_ts <- load_tree_sequence("msprime", "forward", exp_decr_ts, forward_exp_decr_model, N, rec_rate, mut_rate, seed) msprime_backward_exp_decr_ts <- load_tree_sequence("msprime", "backward", exp_decr_ts, backward_exp_decr_model, N, rec_rate, mut_rate, seed) # load tree sequence files from SLiM slim_forward_const_ts <- load_tree_sequence("SLiM", "forward", const_ts, forward_const_model, N, rec_rate, mut_rate, seed) slim_backward_const_ts <- load_tree_sequence("SLiM", "backward", const_ts, backward_const_model, N, rec_rate, mut_rate, seed) slim_forward_contr_ts <- load_tree_sequence("SLiM", "forward", contr_ts, forward_contr_model, N, rec_rate, mut_rate, seed) slim_backward_contr_ts <- load_tree_sequence("SLiM", "backward", contr_ts, backward_contr_model, N, rec_rate, mut_rate, seed) slim_forward_expansion_ts <- load_tree_sequence("SLiM", "forward", expansion_ts, forward_expansion_model, N, rec_rate, mut_rate, seed) slim_backward_expansion_ts <- load_tree_sequence("SLiM", "backward", expansion_ts, backward_expansion_model, N, rec_rate, mut_rate, seed) slim_forward_exp_inc_ts <- load_tree_sequence("SLiM", "forward", exp_inc_ts, forward_exp_inc_model, N, rec_rate, mut_rate, seed) slim_backward_exp_inc_ts <- load_tree_sequence("SLiM", "backward", exp_inc_ts, forward_exp_inc_model, N, rec_rate, mut_rate, seed) slim_forward_exp_decr_ts <- load_tree_sequence("SLiM", "forward", exp_decr_ts, forward_exp_decr_model, N, rec_rate, mut_rate, seed) slim_backward_exp_decr_ts <- load_tree_sequence("SLiM", "backward", exp_decr_ts, forward_exp_decr_model, N, rec_rate, mut_rate, seed) # compute AFS from all tree sequence files - msprime msprime_forward_const_afs <- ts_afs(msprime_forward_const_ts, polarised = TRUE)[-1] msprime_backward_const_afs <- ts_afs(msprime_backward_const_ts, polarised = TRUE)[-1] msprime_forward_contr_afs <- ts_afs(msprime_forward_contr_ts, polarised = TRUE)[-1] msprime_backward_contr_afs <- ts_afs(msprime_backward_contr_ts, polarised = TRUE)[-1] msprime_forward_expansion_afs <- ts_afs(msprime_forward_expansion_ts, polarised = TRUE)[-1] msprime_backward_expansion_afs <- ts_afs(msprime_backward_expansion_ts, polarised = TRUE)[-1] msprime_forward_exp_inc_afs <- ts_afs(msprime_forward_exp_inc_ts, polarised = TRUE)[-1] msprime_backward_exp_inc_afs <- ts_afs(msprime_backward_exp_inc_ts, polarised = TRUE)[-1] msprime_forward_exp_decr_afs <- ts_afs(msprime_forward_exp_decr_ts, polarised = TRUE)[-1] msprime_backward_exp_decr_afs <- ts_afs(msprime_backward_exp_decr_ts, polarised = TRUE)[-1] # compute AFS from all tree sequence files - SLiM slim_forward_const_afs <- ts_afs(slim_forward_const_ts, polarised = TRUE)[-1] slim_backward_const_afs <- ts_afs(slim_backward_const_ts, polarised = TRUE)[-1] slim_forward_contr_afs <- ts_afs(slim_forward_contr_ts, polarised = TRUE)[-1] slim_backward_contr_afs <- ts_afs(slim_backward_contr_ts, polarised = TRUE)[-1] slim_forward_expansion_afs <- ts_afs(slim_forward_expansion_ts, polarised = TRUE)[-1] slim_backward_expansion_afs <- ts_afs(slim_backward_expansion_ts, polarised = TRUE)[-1] slim_forward_exp_inc_afs <- ts_afs(slim_forward_exp_inc_ts, polarised = TRUE)[-1] slim_backward_exp_inc_afs <- ts_afs(slim_backward_exp_inc_ts, polarised = TRUE)[-1] slim_forward_exp_decr_afs <- ts_afs(slim_forward_exp_decr_ts, polarised = TRUE)[-1] slim_backward_exp_decr_afs <- ts_afs(slim_backward_exp_decr_ts, polarised = TRUE)[-1] # bind together all allele frequency spectra results afs <- dplyr::bind_rows( dplyr::tibble(f = msprime_forward_const_afs, n = 1:(2 * n_samples), sim = "msprime", direction = "forward", model = sprintf("constant %d", N)), dplyr::tibble(f = msprime_backward_const_afs, n = 1:(2 * n_samples), sim = "msprime", direction = "backward", model = sprintf("constant %d", N)), dplyr::tibble(f = msprime_forward_contr_afs, n = 1:(2 * n_samples), sim = "msprime", direction = "forward", model = sprintf("step contraction %d to %d", N, N / N_factor)), dplyr::tibble(f = msprime_backward_contr_afs, n = 1:(2 * n_samples), sim = "msprime", direction = "backward", model = sprintf("step contraction %d to %d", N, N / N_factor)), dplyr::tibble(f = msprime_forward_expansion_afs, n = 1:(2 * n_samples), sim = "msprime", direction = "forward", model = sprintf("step expansion %d to %d", N, N * N_factor)), dplyr::tibble(f = msprime_backward_expansion_afs, n = 1:(2 * n_samples), sim = "msprime", direction = "backward", model = sprintf("step expansion %d to %d", N, N * N_factor)), dplyr::tibble(f = msprime_forward_exp_inc_afs, n = 1:(2 * n_samples), sim = "msprime", direction = "forward", model = sprintf("exponential increase %d to %d", N / N_factor, N)), dplyr::tibble(f = msprime_backward_exp_inc_afs, n = 1:(2 * n_samples), sim = "msprime", direction = "backward", model = sprintf("exponential increase %d to %d", N / N_factor, N)), dplyr::tibble(f = msprime_forward_exp_decr_afs, n = 1:(2 * n_samples), sim = "msprime", direction = "forward", model = sprintf("exponential decrease %d to %d", N, N / N_factor)), dplyr::tibble(f = msprime_backward_exp_decr_afs, n = 1:(2 * n_samples), sim = "msprime", direction = "backward", model = sprintf("exponential decrease %d to %d", N, N / N_factor)), dplyr::tibble(f = slim_forward_const_afs, n = 1:(2 * n_samples), sim = "slim", direction = "forward", model = sprintf("constant %d", N)), dplyr::tibble(f = slim_backward_const_afs, n = 1:(2 * n_samples), sim = "slim", direction = "backward", model = sprintf("constant %d", N)), dplyr::tibble(f = slim_forward_contr_afs, n = 1:(2 * n_samples), sim = "slim", direction = "forward", model = sprintf("step contraction %d to %d", N, N / N_factor)), dplyr::tibble(f = slim_backward_contr_afs, n = 1:(2 * n_samples), sim = "slim", direction = "backward", model = sprintf("step contraction %d to %d", N, N / N_factor)), dplyr::tibble(f = slim_forward_expansion_afs, n = 1:(2 * n_samples), sim = "slim", direction = "forward", model = sprintf("step expansion %d to %d", N, N * N_factor)), dplyr::tibble(f = slim_backward_expansion_afs, n = 1:(2 * n_samples), sim = "slim", direction = "backward", model = sprintf("step expansion %d to %d", N, N * N_factor)), dplyr::tibble(f = slim_forward_exp_inc_afs, n = 1:(2 * n_samples), sim = "slim", direction = "forward", model = sprintf("exponential increase %d to %d", N / N_factor, N)), dplyr::tibble(f = slim_backward_exp_inc_afs, n = 1:(2 * n_samples), sim = "slim", direction = "backward", model = sprintf("exponential increase %d to %d", N / N_factor, N)), dplyr::tibble(f = slim_forward_exp_decr_afs, n = 1:(2 * n_samples), sim = "slim", direction = "forward", model = sprintf("exponential decrease %d to %d", N, N / N_factor)), dplyr::tibble(f = slim_backward_exp_decr_afs, n = 1:(2 * n_samples), sim = "slim", direction = "backward", model = sprintf("exponential decrease %d to %d", N, N / N_factor)) ) %>% dplyr::mutate(f = as.vector(f), sim = factor(sim, levels = c("msprime", "slim")), model = factor( model, levels = c(sprintf("constant %d", N), sprintf("step contraction %d to %d", N, N / N_factor), sprintf("step expansion %d to %d", N, N * N_factor), sprintf("exponential increase %d to %d", N / N_factor, N), sprintf("exponential decrease %d to %d", N, N / N_factor)))) test_that("msprime forward/backward sims are exactly the same", { expect_true({ df <- afs[afs$sim == "msprime" & grepl("constant", afs$model), ] all(df[df$direction == "forward", "f"] == df[df$direction == "backward", "f"]) }) expect_true({ df <- afs[afs$sim == "msprime" & grepl("step contraction", afs$model), ] all(df[df$direction == "forward", "f"] == df[df$direction == "backward", "f"]) }) expect_true({ df <- afs[afs$sim == "msprime" & grepl("step expansion", afs$model), ] all(df[df$direction == "forward", "f"] == df[df$direction == "backward", "f"]) }) expect_true({ df <- afs[afs$sim == "msprime" & grepl("exponential increase", afs$model), ] all(df[df$direction == "forward", "f"] == df[df$direction == "backward", "f"]) }) expect_true({ df <- afs[afs$sim == "msprime" & grepl("exponential decrease", afs$model), ] all(df[df$direction == "forward", "f"] == df[df$direction == "backward", "f"]) }) }) test_that("SLiM forward/backward sims are exactly the same", { expect_true({ df <- afs[afs$sim == "slim" & grepl("constant", afs$model), ] all(df[df$direction == "forward", "f"] == df[df$direction == "backward", "f"]) }) expect_true({ df <- afs[afs$sim == "slim" & grepl("step contraction", afs$model), ] all(df[df$direction == "forward", "f"] == df[df$direction == "backward", "f"]) }) expect_true({ df <- afs[afs$sim == "slim" & grepl("step expansion", afs$model), ] all(df[df$direction == "forward", "f"] == df[df$direction == "backward", "f"]) }) expect_true({ df <- afs[afs$sim == "slim" & grepl("exponential increase", afs$model), ] all(df[df$direction == "forward", "f"] == df[df$direction == "backward", "f"]) }) expect_true({ df <- afs[afs$sim == "slim" & grepl("exponential decrease", afs$model), ] all(df[df$direction == "forward", "f"] == df[df$direction == "backward", "f"]) }) }) # SLiM and msprime simulations from the same model give the same result # (tested by comparing the distribution plots) # library(ggplot2) # p <- ggplot(afs, aes(n, f, color = direction, linetype = sim)) + # geom_line(stat = "identity", alpha = 0.5) + # facet_wrap(~ model) + # labs(x = "number of derived alleles", y = "count", # title = "Site frequency spectra obtained from five demographic models", # subtitle = "Each model was specified in forward or backward direction of time and executed by # two different backend scripts in slendr (implemented in SLiM and msprime)") + # guides(color = guide_legend("direction of\ntime in slendr"), # linetype = guide_legend("slendr backend\nengine used")) + # scale_x_continuous(breaks = c(1, seq(20, 2 * n_samples, 20)), # limits = c(1, 2 * n_samples)) # png_file <- sprintf("afs_%s.png", Sys.info()["sysname"]) # ggsave(png_file, p, width = 8, height = 5) # make sure that the distributions as they were originally inspected and # verified visually match the new distributions plot -- this is obviously not # a rigorous test but the allele frequency spectra distributions from msprime # and SLiM simulations match almost perfectly assuming we simulate large enough # data to eliminate most of the nose test_that("AFS distributions from SLiM and msprime simulations match", { afs <- afs %>% dplyr::mutate(sim = as.character(sim), model = as.character(model)) # current_tsv <- paste0(tempfile(), ".tsv.gz") # readr::write_tsv(afs, current_tsv, progress = FALSE) original_tsv <- sprintf("afs_%s.tsv.gz", Sys.info()["sysname"]) # readr::write_tsv(afs, original_tsv, progress = FALSE) orig_afs <- readr::read_tsv(original_tsv, show_col_types = FALSE, progress = FALSE) expect_equal(afs, orig_afs) })