skip_if(!is_slendr_env_present()) init_env(quiet = TRUE) set.seed(42) simulate_slim_ts <- function(N) { script_file <- tempfile() ts_file <- tempfile() writeLines(sprintf('initialize() { setSeed(42); initializeTreeSeq(); initializeMutationRate(0); initializeMutationType("m1", 0.5, "f", 0.0); initializeGenomicElementType("g1", m1, 1.0); initializeGenomicElement(g1, 0, 1e5); initializeRecombinationRate(1e-8); } 1 early() { sim.addSubpop("p0", %d); } 100 late() { sim.treeSeqRememberIndividuals(sim.subpopulations.individuals); sim.treeSeqOutput("%s"); } ', N, ts_file), script_file) system2("slim", script_file, stdout = FALSE) ts_file } msprime_ts_sim_ancestry <- function(N) { msprime_file <- tempfile() slendr:::msp$sim_ancestry(N)$dump(msprime_file) msprime_file } msprime_ts_simulate <- function(N) { msprime_file <- tempfile() slendr:::msp$simulate(as.integer(N))$dump(msprime_file) msprime_file } # Make sure the unsimplified tree sequence has the same set of nodes as # what we extracted with ts_nodes (ssampled and all) compare_ts_nodes <- function(ts, N) { data <- ts_nodes(ts) expect_true(nrow(data) == ts$num_nodes) expect_true(nrow(data[data$sampled, ]) == ts$num_samples) if (any(!is.na(data$ind_id))) expect_true(nrow(data[data$sampled, ]) == 2 * N) ts2 <- ts_simplify(ts) data2 <- ts_nodes(ts2) # make sure the same holds also for a simplified tree sequence expect_true(nrow(data2) == ts2$num_nodes) expect_true(sum(data2$sampled) == ts2$num_samples) if (any(!is.na(data$ind_id))) expect_true(sum(data2$sampled) == 2 * N) } # Make sure the extracted phylo tree structure is the same as what is encoded # in the edge table compare_ts_phylo <- function(ts, N) { ts2 <- ts_simplify(ts) tskit_tree <- ts2$at(0) tree <- ts_phylo(ts2, i = 0, quiet = TRUE) tree_data <- ts_nodes(tree) # make sure that the converted phylo tree has the same number of edges and # nodes as the original tskit Tree object expect_true(nrow(tree$edge) == tskit_tree$num_edges) expect_true((tree$Nnode + length(tree$tip.label)) == length(reticulate::iterate(tskit_tree$nodes(tskit_tree$root)))) # the root must be the same node as well phylo_root <- length(tree$tip.label) + 1 tskit_root <- tskit_tree$root expect_true(which(tree_data$node_id == tskit_root) == which(tree_data$phylo_id == phylo_root)) expect_true(length(tree$tip.label) == nrow(tree_data[tree_data$sampled, ])) } # SLiM -------------------------------------------------------------------- test_that("non-slendr SLiM ts_nodes corresponds to the expected outcome", { N <- 5 ts_file <- simulate_slim_ts(N) suppressMessages(ts <- ts_load(ts_file)) compare_ts_nodes(ts, N) }) test_that("non-slendr SLiM simplified ts_nodes corresponds to the expected outcome", { N <- 500 ts_file <- simulate_slim_ts(N) suppressMessages(ts <- ts_load(ts_file)) simplify_to <- ts_nodes(ts) %>% dplyr::filter(sampled) %>% dplyr::pull(node_id) %>% sample(3) expect_warning(ts2 <- ts_simplify(ts, simplify_to = simplify_to), "Simplifying a non-recapitated tree sequence") expect_silent(ts2 <- ts_recapitate(ts, Ne = 100, recombination_rate = 1e-8) %>% ts_simplify(simplify_to = simplify_to)) # make sure that the simplified nodes match the pedigree_id values in the # original tree-sequence data orig_ids <- ts_nodes(ts) %>% dplyr::filter(node_id %in% simplify_to) %>% dplyr::pull(pedigree_id) simplified_ids <- ts_nodes(ts2) %>% dplyr::filter(sampled) %>% dplyr::pull(pedigree_id) expect_true(all(orig_ids == simplified_ids)) }) test_that("non-slendr SLiM ts_phylo corresponds to the expected outcome", { N <- 500 ts_file <- simulate_slim_ts(N) suppressMessages(ts <- ts_load(ts_file) %>% ts_recapitate(recombination_rate = 1e-8, Ne = 100)) compare_ts_phylo(ts, N) }) test_that("non-slendr SLiM ts_nodes can be recapitated", { N <- 10000 ts_file <- simulate_slim_ts(N) suppressMessages(ts <- ts_load(ts_file) %>% ts_recapitate(Ne = 100, recombination_rate = 1e-8)) expect_silent(compare_ts_nodes(ts, N)) }) test_that("non-slendr SLiM ts_nodes carries correct population names", { ts_file <- simulate_slim_ts(50) suppressMessages(ts <- ts_load(ts_file)) expect_true(unique(ts_nodes(ts)$pop) == "p0") }) # msprime tree sequences (sim_ancestry) ------------------------------------- test_that("non-slendr msprime simplification on its own gives warning", { N <- 5 ts_file <- msprime_ts_sim_ancestry(N) suppressMessages(ts <- ts_load(ts_file)) compare_ts_nodes(ts, N) }) test_that("non-slendr SLiM simplified ts_nodes corresponds to the expected outcome", { N <- 5 ts_file <- msprime_ts_sim_ancestry(N) suppressMessages(ts <- ts_load(ts_file)) simplify_to <- ts_nodes(ts) %>% dplyr::filter(sampled) %>% dplyr::pull(node_id) %>% sample(3) ts2 <- ts_simplify(ts, simplify_to = simplify_to) # there are no fixed pedigree_id values, so let's check that the number of # "sampled" nodes corresponds to the number of nodes used for simplification expect_true(sum(ts_nodes(ts2)$sampled) == 3) }) test_that("non-slendr msprime ts_phylo corresponds to the expected outcome", { N <- 5 ts_file <- msprime_ts_sim_ancestry(N) suppressMessages(ts <- ts_load(ts_file)) compare_ts_phylo(ts, N) }) test_that("non-slendr msprime ts_phylo (simplified) corresponds to the expected outcome", { N <- 5 ts_file <- msprime_ts_sim_ancestry(N) suppressMessages(ts <- ts_load(ts_file)) simplify_to <- ts_nodes(ts) %>% dplyr::filter(sampled) %>% dplyr::pull(node_id) %>% sample(3) ts2 <- ts_simplify(ts, simplify_to = simplify_to) compare_ts_phylo(ts2, N) }) test_that("non-slendr msprime ts_nodes carries correct population names", { ts_file <- msprime_ts_sim_ancestry(50) suppressMessages(ts <- ts_load(ts_file)) expect_true(unique(ts_nodes(ts)$pop) == "pop_0") }) # msprime tree sequences (simulate) ------------------------------------- test_that("non-slendr msprime simplification on its own gives warning (simulate)", { N <- 5 ts_file <- msprime_ts_simulate(N) suppressMessages(ts <- ts_load(ts_file)) compare_ts_nodes(ts, N) }) test_that("non-slendr SLiM simplified ts_nodes corresponds to the expected outcome (simulate)", { N <- 5 ts_file <- msprime_ts_simulate(N) suppressMessages(ts <- ts_load(ts_file)) simplify_to <- ts_nodes(ts) %>% dplyr::filter(sampled) %>% dplyr::pull(node_id) %>% sample(3) ts2 <- ts_simplify(ts, simplify_to = simplify_to) # there are no fixed pedigree_id values, so let's check that the number of # "sampled" nodes corresponds to the number of nodes used for simplification expect_true(sum(ts_nodes(ts2)$sampled) == 3) }) test_that("non-slendr msprime ts_phylo corresponds to the expected outcome (simulate)", { N <- 5 ts_file <- msprime_ts_simulate(N) suppressMessages(ts <- ts_load(ts_file)) compare_ts_phylo(ts, N) }) test_that("non-slendr msprime ts_phylo (simplified) corresponds to the expected outcome (simulate)", { N <- 5 ts_file <- msprime_ts_simulate(N) suppressMessages(ts <- ts_load(ts_file)) simplify_to <- ts_nodes(ts) %>% dplyr::filter(sampled) %>% dplyr::pull(node_id) %>% sample(3) ts2 <- ts_simplify(ts, simplify_to = simplify_to) compare_ts_phylo(ts2, N) }) test_that("non-slendr msprime ts_nodes carries correct population names (simulate)", { ts_file <- msprime_ts_simulate(50) suppressMessages(ts <- ts_load(ts_file)) expect_true(unique(ts_nodes(ts)$pop) == "0") }) # SLiM tskit statistics interface ----------------------------------------- test_that("tskit statistics interface works on non-slendr SLiM outputs", { script_file <- tempfile() ts_file <- tempfile() writeLines(sprintf('initialize() { setSeed(123); initializeTreeSeq(); initializeMutationRate(0); initializeMutationType("m1", 0.5, "f", 0.0); initializeGenomicElementType("g1", m1, 1.0); initializeGenomicElement(g1, 0, 1e6); initializeRecombinationRate(1e-8); } 1 early() { sim.addSubpop("p1", 10); } 1000 early() { sim.addSubpopSplit("p2", 500, p1); } 3000 early() { sim.addSubpopSplit("p3", 2500, p1); } 5000 early() { sim.addSubpopSplit("p4", 10000, p1); } 20000 late() { sim.treeSeqOutput("%s"); } ', ts_file), script_file) system2("slim", script_file, stdout = FALSE) suppressMessages( ts <- ts_load(ts_file) %>% ts_recapitate(Ne = 10, recombination_rate = 1e-8) %>% ts_simplify() %>% ts_mutate(mutation_rate = 1e-7) ) data <- ts_nodes(ts) %>% dplyr::filter(sampled) groups <- split(data$node_id, data$pop) # diversity must increase p1 -> p2 -> p3 -> p4 diversity <- ts_diversity(ts, sample_sets = groups) expect_true(all(diff(diversity$diversity) > 0)) # divergence from p1 must decrease p2 -> p3 -> p4 divergence <- ts_divergence(ts, sample_sets = groups) expect_true(all((divergence %>% dplyr::filter(x == 1) %>% .$divergence %>% diff) < 0)) expect_true(all(sort(unique(ts_nodes(ts)$pop) == c("p1", "p2", "p3", "p4")))) }) test_that("ts_ibd() on nonspatial SLiM tree sequences works with coordinates = (T|F)", { ts_file <- simulate_slim_ts(1000) suppressMessages(ts <- ts_load(ts_file)) suppressWarnings(ibd_totals <- ts_ibd(ts, coordinates = FALSE)) suppressWarnings(ibd_fragments <- ts_ibd(ts, coordinates = TRUE)) # compute IBD totals from individual fragments manually ibd_totals2 <- dplyr::group_by(ibd_fragments, node1, node2, node1_time, node2_time) %>% dplyr::summarise(count = dplyr::n(), total = sum(length), .groups = "keep") %>% dplyr::select(node1, node2, count, total, node1_time, node2_time) %>% dplyr::ungroup() expect_equal(ibd_totals, ibd_totals2) }) test_that("ts_ibd() on nonspatial msprime tree sequences works with coordinates = (T|F)", { ts_file <- msprime_ts_sim_ancestry(100) suppressMessages(ts <- ts_load(ts_file)) suppressWarnings(ibd_totals <- ts_ibd(ts, coordinates = FALSE)) suppressWarnings(ibd_fragments <- ts_ibd(ts, coordinates = TRUE)) # compute IBD totals from individual fragments manually ibd_totals2 <- dplyr::group_by(ibd_fragments, node1, node2, node1_time, node2_time) %>% dplyr::summarise(count = dplyr::n(), total = sum(length), .groups = "keep") %>% dplyr::select(node1, node2, count, total, node1_time, node2_time) %>% dplyr::ungroup() expect_equal(ibd_totals, ibd_totals2) }) test_that("ts_ibd() on non-spatial msprime tree sequences gives a correct object", { ts_file <- msprime_ts_sim_ancestry(100) suppressMessages(ts <- ts_load(ts_file)) ibd_sf <- ts_ibd(ts, coordinates = FALSE, minimum_length = 0) ibd_nosf <- ts_ibd(ts, coordinates = FALSE, minimum_length = 0, sf = FALSE) # returned object is never of a sf class as it's not from a spatial tree sequence expect_true(!inherits(ibd_sf, "sf")) expect_true(!inherits(ibd_nosf, "sf")) # except for the spatial columns, the IBD results are the same expect_equal(ibd_sf, ibd_nosf) })