# test SLs with ROCR risk library(testthat) context("test-ROCR_risk.R -- Lrnr_sl functionality with ROCR risks") skip_on_cran() if (!identical(Sys.getenv("NOT_CRAN"), "true")) { return() } library(sl3) library(origami) library(SuperLearner) data(cpp_imputed) covars <- c( "apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn" ) cpp_imputed$haz_binary <- ifelse(cpp_imputed$haz < mean(cpp_imputed$haz), 0, 1) task <- sl3_Task$new( data.table::copy(cpp_imputed), covariates = covars, outcome = "haz_binary" ) lrnr_glm <- make_learner(Lrnr_glm) lrnr_xgboost <- make_learner(Lrnr_xgboost, verbose = 0, print_every_n = 0) risk_aucpr <- custom_ROCR_risk("aucpr") metalrnr_ga <- Lrnr_ga$new( learner_function = metalearner_logistic_binomial, eval_function = risk_aucpr, monitor = FALSE ) sl <- Lrnr_sl$new( learners = list(lrnr_glm, lrnr_xgboost), metalearner = metalrnr_ga ) fit <- sl$train(task) tbl <- fit$cv_risk(risk_aucpr) cvSL <- cv_sl(fit, risk_aucpr) cpp_imputed$weights <- rep(1.5, nrow(cpp_imputed)) cpp_imputed$id <- 1:nrow(cpp_imputed) task2 <- sl3_Task$new( data.table::copy(cpp_imputed), covariates = covars, outcome = "haz_binary", weights = "weights", id = "id" ) risk_tpr <- custom_ROCR_risk("tpr", name = "TPR") lrnr_solnp_tpr <- Lrnr_solnp$new( learner_function = metalearner_logistic_binomial, eval_function = risk_tpr ) sl <- Lrnr_sl$new( learners = list(lrnr_glm, lrnr_xgboost), metalearner = lrnr_solnp_tpr ) fit2 <- sl$train(task2) varimp <- importance(fit2, risk_tpr, type = "permute")