context("test-pipeline.R -- Basic pipeline functionality") library(origami) library(SuperLearner) library(data.table) data(cpp_imputed) covars <- c( "apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome) glm_learner <- Lrnr_glm$new() test_screen_pipe <- function(screen_name_SuperLearner) { set.seed(123) screen_learner <- Lrnr_pkg_SuperLearner_screener$new(screen_name_SuperLearner) screen_glm <- make_learner(Pipeline, screen_learner, glm_learner) fit <- screen_glm$train(task) expect_equal( fit$fit_object$learner_fits[[1]]$fit_object$selected, names(fit$fit_object$learner_fits$Lrnr_glm_TRUE$coefficients)[-1] ) } test_that("Pipeline pipes selected covariates from screening algorithms", { screens <- c( "screen.glmnet", "screen.corP", "screen.corRank", "screen.randomForest" ) lapply(screens, test_screen_pipe) })