test_that("Segmentation", { # Example of classification of a data cube # Create a data cube from local files set.seed(29031956) data_dir <- system.file("extdata/raster/mod13q1", package = "sits") sinop <- sits_cube( source = "BDC", collection = "MOD13Q1-6.1", data_dir = data_dir, progress = FALSE ) # create output dir output_dir <- paste0(tempdir(), "/seg") if (!dir.exists(output_dir)) { dir.create(output_dir) } # Segment the cube segments <- sits_segment( cube = sinop, output_dir = output_dir, multicores = 2, memsize = 24, progress = FALSE, version = "vt" ) expect_s3_class(object = segments, class = "vector_cube") expect_true("vector_info" %in% colnames(segments)) # Read segments as sf object vector_segs <- sits:::.segments_read_vec(segments) expect_equal( as.character(unique(sf::st_geometry_type(vector_segs))), expected = "POLYGON" ) vector_obj <- sits:::.vector_open_vec(segments$vector_info[[1]]$path) expect_true("sf" %in% class(vector_obj)) crs_wkt <- sits:::.vector_crs(vector_obj, wkt = TRUE) expect_equal(class(crs_wkt), "character") expect_true(grepl("PROJCRS", crs_wkt)) crs_nowkt <- sits:::.vector_crs(vector_obj, wkt = FALSE) expect_equal(class(crs_nowkt), "crs") expect_true(grepl("PROJCRS", crs_nowkt$wkt)) p1 <- plot(segments, band = "NDVI") expect_equal(p1$tm_grid$grid.projection, 4326) # testing resume feature Sys.setenv("SITS_DOCUMENTATION_MODE" = "FALSE") expect_message({ object <- sits_segment( cube = sinop, output_dir = output_dir, multicores = 1, memsize = 24, progress = FALSE, version = "vt" ) }) # test read vector cube segment_cube <- sits_cube( source = "BDC", collection = "MOD13Q1-6.1", data_dir = data_dir, vector_dir = output_dir, vector_band = "segments", version = "vt", progress = FALSE ) expect_s3_class(object = segment_cube, class = "vector_cube") expect_true("vector_info" %in% colnames(segment_cube)) # Train a rf model samples_filt <- sits_apply(samples_modis_ndvi, NDVI = sits_sgolay(NDVI)) rfor_model <- sits_train(samples_filt, sits_rfor()) # Create a probability vector cube start_date <- sits_timeline(sinop)[1] end_date <- sits_timeline(sinop)[length(sits_timeline(sinop))] probs_segs <- sits_classify( data = segments, ml_model = rfor_model, filter_fn = sits_sgolay(), output_dir = output_dir, n_sam_pol = 20, multicores = 6, memsize = 24, start_date = start_date, end_date = end_date, version = "vt2" ) expect_s3_class(probs_segs, class = "probs_vector_cube") expect_true( "vector_info" %in% colnames(probs_segs) ) # Read segments of a probability cube vector_probs <- sits:::.segments_read_vec(probs_segs) expect_true( all(sits_labels(probs_segs) %in% colnames(vector_probs)) ) # test resume feature Sys.setenv("SITS_DOCUMENTATION_MODE" = "FALSE") expect_message({ obj <- sits_classify( data = segments, ml_model = rfor_model, output_dir = output_dir, n_sam_pol = 20, multicores = 6, memsize = 24, version = "vt2" ) }) # Create a classified vector cube class_segs <- sits_label_classification( cube = probs_segs, output_dir = output_dir, multicores = 2, memsize = 4 ) expect_s3_class(object = class_segs, class = "class_vector_cube") expect_true( "vector_info" %in% colnames(class_segs) ) # Read segments of a classified cube vector_class <- sits:::.segments_read_vec(class_segs) expect_equal(nrow(vector_probs), nrow(vector_class)) expect_true(all(sits_labels(rfor_model) %in% colnames(vector_probs))) expect_true(all(sits_labels(rfor_model) %in% colnames(vector_class))) expect_true( "class" %in% colnames(vector_class) ) p3 <- plot(class_segs) expect_equal(p3$tm_shape$shp_name, "sf_seg") expect_equal(ncol(p3$tm_shape$shp), 2) expect_equal(p3$tm_compass$compass.show.labels, 1) # testing resume feature Sys.setenv("SITS_DOCUMENTATION_MODE" = "FALSE") expect_message({ obj <- sits_label_classification( cube = probs_segs, output_dir = output_dir, multicores = 2, memsize = 4 ) }) uncert_vect <- sits_uncertainty(probs_segs, output_dir = output_dir) p4 <- plot(uncert_vect) expect_equal(p4$tm_shape$shp_name, "sf_seg") sf_uncert <- .segments_read_vec(uncert_vect) expect_true("entropy" %in% colnames(sf_uncert)) expect_equal(nrow(sf_uncert), nrow(vector_class)) expect_true(all(sits_labels(rfor_model) %in% colnames(sf_uncert))) }) test_that("Segmentation of large files",{ modis_cube <- .try( { sits_cube( source = "BDC", collection = "MOD13Q1-6.1", bands = c("NDVI", "EVI", "CLOUD"), tiles = "012010", start_date = "2018-09-14", end_date = "2019-08-29", progress = FALSE ) }, .default = NULL ) testthat::skip_if(purrr::is_null(modis_cube), message = "BDC is not accessible" ) output_dir <- paste0(tempdir(), "/segs") if (!dir.exists(output_dir)) { dir.create(output_dir) } expect_warning( modis_cube_local <- sits_regularize( cube = modis_cube, period = "P1M", res = 1000, multicores = 6, output_dir = output_dir ) ) expect_true(.cube_is_regular(modis_cube_local)) expect_true(all(sits_bands(modis_cube_local) %in% c("EVI", "NDVI"))) segments <- sits_segment( cube = modis_cube_local, seg_fn = sits_slic( step = 50, iter = 10, minarea = 50 ), output_dir = output_dir, multicores = 4, memsize = 16, progress = FALSE, version = "v2bands" ) expect_s3_class(object = segments, class = "vector_cube") expect_true("vector_info" %in% colnames(segments)) # Train a rf model rfor_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor) probs_segs <- sits_classify( data = segments, ml_model = rfor_model, output_dir = output_dir, n_sam_pol = 10, multicores = 6, memsize = 24, version = "v2bands" ) expect_s3_class(probs_segs, class = "probs_vector_cube") expect_true( "vector_info" %in% colnames(probs_segs) ) # Read segments of a probability cube vector_probs <- .segments_read_vec(probs_segs) expect_true( all(sits_labels(probs_segs) %in% colnames(vector_probs)) ) })