test_that("SVM - Formula logref", { svm_model <- sits_train( samples_modis_ndvi, sits_svm( formula = sits_formula_logref(), kernel = "radial", cost = 10 ) ) point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI") point_class <- sits_classify( data = point_ndvi, ml_model = svm_model, multicores = 1, progress = FALSE ) expect_true(sits_labels(point_class) == "NoClass") expect_true(all(point_class$predicted[[1]]$class %in% sits_labels(samples_modis_ndvi))) expect_true(nrow(sits_show_prediction(point_class)) == 17) }) test_that("SVM - Formula logref - difference", { svm_model <- sits_train( samples_modis_ndvi, ml_method = sits_svm( formula = sits_formula_logref(), kernel = "radial", cost = 10 ) ) point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI") point_class <- sits_classify( data = point_ndvi, ml_model = svm_model, multicores = 2, progress = FALSE ) expect_true(all(point_class$predicted[[1]]$class %in% sits_labels(samples_modis_ndvi))) expect_true(nrow(sits_show_prediction(point_class)) == 17) }) test_that("SVM - Formula linear", { svm_model <- sits_train( samples_modis_ndvi, sits_svm( formula = sits_formula_linear(), kernel = "radial", cost = 10 ) ) point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI") point_class <- sits_classify( data = point_ndvi, ml_model = svm_model, progress = FALSE ) expect_true(all(point_class$predicted[[1]]$class %in% sits_labels(samples_modis_ndvi))) expect_true(nrow(sits_show_prediction(point_class)) == 17) }) test_that("Random Forest", { rfor_model <- sits_train(samples_modis_ndvi, sits_rfor(num_trees = 200)) expect_equal(sits_bands(rfor_model), "NDVI") point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI") point_class <- sits_classify( data = point_ndvi, ml_model = rfor_model, progress = FALSE ) expect_true(all(point_class$predicted[[1]]$class %in% sits_labels(samples_modis_ndvi))) expect_true(nrow(sits_show_prediction(point_class)) == 17) exported_rf <- sits_model_export(rfor_model) expect_s3_class(object = exported_rf, class = "randomForest") }) test_that("Random Forest - Whittaker", { samples_whit <- sits_filter(samples_modis_ndvi, filter = sits_whittaker()) rfor_model <- sits_train(samples_whit, sits_rfor(num_trees = 200)) point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI") point_whit <- sits_filter(point_ndvi, filter = sits_whittaker()) point_class <- sits_classify( data = point_whit, ml_model = rfor_model, progress = FALSE ) expect_true(all(point_class$predicted[[1]]$class %in% sits_labels(samples_modis_ndvi))) expect_true(nrow(sits_show_prediction(point_class)) == 17) }) test_that("Random Forest - SGolay", { samples_mt_sg <- sits_filter(samples_modis_ndvi, filter = sits_sgolay()) rfor_model <- sits_train(samples_mt_sg, sits_rfor(num_trees = 200)) point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI") point_sg <- sits_filter(point_ndvi, filter = sits_sgolay()) point_class <- sits_classify( data = point_sg, ml_model = rfor_model, progress = FALSE ) expect_true(all(point_class$predicted[[1]]$class %in% sits_labels(samples_modis_ndvi))) expect_true(nrow(sits_show_prediction(point_class)) == 17) }) test_that("XGBoost", { model <- sits_train( samples_modis_ndvi, sits_xgboost( nrounds = 10, verbose = FALSE ) ) point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI") point_class <- sits_classify( data = point_ndvi, ml_model = model, progress = FALSE ) expect_true(all(point_class$predicted[[1]]$class %in% sits_labels(samples_modis_ndvi))) expect_true(nrow(sits_show_prediction(point_class)) == 17) }) test_that("DL-MLP", { model <- sits_train( samples_modis_ndvi, sits_mlp( layers = c(128, 128), dropout_rates = c(0.5, 0.4), epochs = 5 ) ) point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI") point_class <- sits_classify( data = point_ndvi, ml_model = model, progress = FALSE ) expect_true(all(point_class$predicted[[1]]$class %in% sits_labels(samples_modis_ndvi))) expect_true(nrow(sits_show_prediction(point_class)) == 17) mlp_model <- sits_model_export(model) expect_equal(class(mlp_model), "luz_module_fitted") expect_equal(mlp_model$ctx$hparams$num_pred, 12) expect_equal(mlp_model$ctx$hparams$layers[1], 128) expect_equal(mlp_model$ctx$hparams$layers[2], 128) expect_equal(mlp_model$ctx$hparams$y_dim, 4) stats <- .ml_stats(mlp_model) expect_null(stats) }) test_that("TempCNN model", { model <- sits_train( samples_modis_ndvi, sits_tempcnn(epochs = 5) ) point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI" ) point_class <- sits_classify( data = point_ndvi, ml_model = model, progress = FALSE ) expect_true(all(point_class$predicted[[1]]$class %in% sits_labels(samples_modis_ndvi))) expect_true(nrow(sits_show_prediction(point_class)) == 17) }) test_that("LightTAE model", { model <- sits_train( samples_modis_ndvi, sits_lighttae(epochs = 5) ) point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI") point_class <- sits_classify( data = point_ndvi, ml_model = model, progress = FALSE ) expect_true(all(point_class$predicted[[1]]$class %in% sits_labels(samples_modis_ndvi))) expect_true(nrow(sits_show_prediction(point_class)) == 17) }) test_that("PSETAE model", { model <- sits_train( samples_modis_ndvi, sits_tae(epochs = 5) ) point_ndvi <- sits_select(point_mt_6bands, bands = c("NDVI")) point_class <- sits_classify( data = point_ndvi, ml_model = model, progress = FALSE ) expect_true(all(point_class$predicted[[1]]$class %in% sits_labels(samples_modis_ndvi))) expect_true(nrow(sits_show_prediction(point_class)) == 17) }) test_that("normalization new version", { # # New normalization # stats <- .samples_stats(cerrado_2classes) # In new version only predictors can be normalized preds <- .predictors(cerrado_2classes) # Now, 'norm1' is a normalized predictors preds_norm <- .pred_normalize(preds, stats) # From predictors, get feature values values <- .pred_features(preds) values_norm <- .pred_features(preds_norm) # Normalized data should have minimum value between # 0.0001 (inclusive) and abs(min(values)) expect_true(1e-4 <= min(values_norm) && min(values_norm) < abs(min(values))) # Normalized data should have maximum value between # abs(max(values)) and 1.0 (inclusive) expect_true(abs(max(values)) < max(values_norm) && max(values_norm) <= 1.0) }) test_that("ML errors", { expect_error(.ml_model("a")) })