test_that("Plot Time Series and Images", { cerrado_ndvi <- sits_select(cerrado_2classes, "NDVI") p <- plot(cerrado_ndvi[1, ]) expect_equal(p$labels$title, "location (-14.05, -54.23) - Cerrado") cerrado_ndvi_1class <- dplyr::filter(cerrado_ndvi, label == "Cerrado") p1 <- plot(cerrado_ndvi_1class) expect_equal( p1$labels$title, "Samples (400) for class Cerrado in band = NDVI" ) p2 <- plot(sits_patterns(cerrado_2classes)) expect_equal(p2$guides$colour$title, "Bands") expect_equal(p2$theme$legend.position, "bottom") p3 <- cerrado_2classes |> sits_patterns() |> sits_select(bands = "EVI") |> plot() expect_equal(as.Date(p3$data$Time[1]), as.Date("2000-09-13")) expect_equal(p3$data$Pattern[1], "Cerrado") expect_equal(p3$data$name[1], "EVI") expect_equal(p3$guides$colour$title, "Bands") p4 <- cerrado_2classes |> sits_patterns() |> plot(bands = "NDVI") expect_equal(as.Date(p4$data$Time[1]), as.Date("2000-09-13")) expect_equal(p4$data$Pattern[1], "Cerrado") expect_equal(p4$data$name[1], "NDVI") expect_equal(p4$guides$colour$title, "Bands") point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI") set.seed(290356) rfor_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor()) point_class <- sits_classify(point_ndvi, rfor_model, progress = FALSE) p3 <- plot(point_class) expect_equal(p3[[1]]$labels$y, "Value") expect_equal(p3[[1]]$labels$x, "Time") expect_equal(p3[[1]]$theme$legend.position, "bottom") data_dir <- system.file("extdata/raster/mod13q1", package = "sits") sinop <- sits_cube( source = "BDC", collection = "MOD13Q1-6", data_dir = data_dir, progress = FALSE ) p <- plot(sinop, band = "NDVI", palette = "RdYlGn", rev = TRUE) expect_equal(p$tm_shape$shp_name, "stars_obj") expect_equal(p$tm_raster$palette, "-RdYlGn") expect_equal(p$tm_grid$grid.projection, 4326) p_rgb <- plot(sinop, red = "NDVI", green = "NDVI", blue = "NDVI") expect_equal(p_rgb$tm_shape$shp_name, "rgb_st") expect_equal(p_rgb$tm_grid$grid.projection, 4326) sinop_probs <- suppressMessages( sits_classify( sinop, ml_model = rfor_model, memsize = 2, multicores = 2, output_dir = tempdir(), progress = FALSE ) ) p_probs <- plot(sinop_probs) expect_equal(p_probs$tm_raster$palette, "YlGn") expect_equal(length(p_probs$tm_raster$title), 4) expect_equal(p_probs$tm_layout$legend.bg.color, "white") p_probs_f <- plot(sinop_probs, labels = "Forest") expect_equal(p_probs_f$tm_raster$palette, "YlGn") expect_equal(length(p_probs_f$tm_raster$title), 1) expect_equal(p_probs_f$tm_layout$legend.bg.color, "white") sinop_uncert <- sits_uncertainty(sinop_probs, output_dir = tempdir() ) p_uncert <- plot(sinop_uncert, palette = "Reds", rev = FALSE) expect_equal(p_uncert$tm_raster$palette, "Reds") expect_equal(length(p_uncert$tm_raster$title), 1) expect_equal(p_uncert$tm_layout$legend.bg.color, "white") sinop_labels <- sits_label_classification( sinop_probs, output_dir = tempdir(), progress = FALSE ) p4 <- plot(sinop_labels, title = "Classified image") expect_equal(p4$tm_grid$grid.projection, 4326) expect_equal(p4$tm_raster$n, 5) expect_true(p4$tm_shape$check_shape) }) test_that("Plot Accuracy", { # show accuracy for a set of samples train_data <- sits_sample(samples_modis_ndvi, frac = 0.5) test_data <- sits_sample(samples_modis_ndvi, frac = 0.5) # compute a random forest model rfor_model <- sits_train(train_data, sits_rfor()) # classify training points points_class <- sits_classify(test_data, rfor_model, progress = FALSE) # calculate accuracy acc <- sits_accuracy(points_class) # plot accuracy p <- plot(acc) expect_equal(p$labels$title, "Confusion matrix") expect_equal(p$labels$x, "Class") expect_equal(p$labels$y, "Agreement with reference") expect_equal(p$theme$line$colour, "black") }) test_that("Plot Models", { set.seed(290356) rfor_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor()) p_model <- plot(rfor_model) expect_true(all(p_model$data$variable %in% c( "NDVI1", "NDVI2", "NDVI3", "NDVI4", "NDVI5", "NDVI6", "NDVI7", "NDVI8", "NDVI9", "NDVI10", "NDVI11", "NDVI12" ))) expect_true(all(p_model$data$minimal_depth[1:2] %in% c(0, 1))) xgb_model <- sits_train(samples_modis_ndvi, ml_method = sits_xgboost()) p_xgb <- plot(xgb_model) expect_equal(p_xgb$x$config$engine, "dot") expect_false(p_xgb$sizingPolicy$browser$fill) expect_false(p_xgb$sizingPolicy$browser$external) }) test_that("Dendrogram Plot", { samples <- sits_cluster_dendro(cerrado_2classes, bands = c("NDVI", "EVI")) cluster <- .cluster_dendrogram( samples = samples, bands = c("NDVI", "EVI") ) best_cut <- .cluster_dendro_bestcut(samples, cluster) dend <- plot(samples, cluster = cluster, cutree_height = best_cut["height"], palette = "RdYlGn" ) expect_equal(class(dend), "dendrogram") }) test_that("Plot torch model", { model <- sits_train( samples_modis_ndvi, sits_mlp( layers = c(128, 128), dropout_rates = c(0.5, 0.4), epochs = 50 ) ) pk <- plot(model) expect_true(length(pk$layers) == 2) expect_true(pk$labels$colour == "data") expect_true(pk$labels$x == "epoch") expect_true(pk$labels$y == "value") }) test_that("Plot series with NA", { cerrado_ndvi <- cerrado_2classes |> sits_select(bands = "NDVI") |> dplyr::filter(label == "Cerrado") cerrado_ndvi_1 <- cerrado_ndvi[1, ] ts <- cerrado_ndvi_1$time_series[[1]] ts[1, 2] <- NA ts[10, 2] <- NA cerrado_ndvi_1$time_series[[1]] <- ts pna <- suppressWarnings(plot(cerrado_ndvi_1)) expect_true(pna$labels$x == "Index") expect_true(pna$labels$y == "value") }) test_that("SOM map plot", { set.seed(1234) som_map <- suppressWarnings(sits_som_map( cerrado_2classes, grid_xdim = 5, grid_ydim = 5 )) p <- suppressWarnings(plot(som_map)) expect_true(all(names(p$rect) %in% c("w", "h", "left", "top"))) pc <- plot(som_map, type = "mapping") expect_true(all(names(pc$rect) %in% c("w", "h", "left", "top"))) }) test_that("SOM evaluate cluster plot", { set.seed(1234) som_map <- suppressWarnings(sits_som_map( cerrado_2classes, grid_xdim = 5, grid_ydim = 5 )) cluster_purity_tb <- sits_som_evaluate_cluster(som_map) p <- plot(cluster_purity_tb) expect_equal(p$labels$title, "Confusion by cluster") expect_equal(p$labels$y, "Percentage of mixture") })