test_that("beta distributed data are generated correctly", { skip_on_cran() p1 <- runif(1, .1, .9) v1 <- p1*(1-p1)/2 p2 <- runif(1, .1, .9) v2 <- p2*(1-p2)/2 logitp2 <- log(p2 / (1-p2)) def <- defData(varname = "b1", formula = "..p1", variance = 1, dist = "beta") def <- defData(def, varname = "b2", formula = "..logitp2", variance = 1, dist = "beta", link="logit") dd <- genData(n = 1000, dtDefs = def) diff <- dd[, .(abs(mean(b1) - p1), abs(mean(b2) - p2)) ] expect_true(all(diff < 0.05)) diffv <- dd[, .(abs(var(b1) - v1), abs(var(b2) - v2)) ] expect_true(all(diffv < 0.02)) }) test_that("gamma distributed data are generated correctly", { skip_on_cran() u1 <- runif(1, 5, 15) u2 <- runif(1, 5, 15) logu2 <- log(u2) def <- defData(varname = "g1", formula = "..u1", variance = 2, dist = "gamma") def <- defData(def, varname = "g2", formula = "..logu2", variance = 2, dist = "gamma", link = "log") dd <- genData(n = 5000, dtDefs = def) diff <- dd[, .(abs(mean(g1) - u1), abs(mean(g2) - u2)) ] expect_true(all(diff < 1.5)) diffv <- dd[, .(abs(var(g1)/ (u1^2*2)), var(g2)/(u2^2*2)) ] expect_true(all(abs(diffv - 1) < 0.25)) })