context("From scratch") x <- rep(1:10) g <- c('a', 'b', 'c') X <- expand.grid(x=x, g=g) b <- c(2, -0.1) # fixed intercept and slope V1 <- 0.5 # random intercept variance V2 <- matrix(c(0.5,0.05,0.05,0.1), 2) # random intercept and slope variance-covariance matrix s <- 1 # residual variance test_that("makeLmer works", { model1 <- makeLmer(y ~ x + (1|g), fixef=b, VarCorr=V1, sigma=s, data=X) expect_equivalent(fixef(model1), b) expect_equivalent(sigma(model1), s) expect_equal(c(VarCorr(model1)$g), V1) ps <- powerSim(model1, nsim=1) expect_equal(nrow(ps$warnings), 0) expect_equal(nrow(ps$errors), 0) }) test_that("makeGlmer works", { model2 <- makeGlmer(z ~ x + (x|g), family="poisson", fixef=b, VarCorr=V2, data=X) expect_equivalent(fixef(model2), b) expect_equal(c(VarCorr(model2)$g), c(V2)) ps <- powerSim(model2, nsim=1) expect_equal(nrow(ps$warnings), 0) expect_equal(nrow(ps$errors), 0) rval <- X model3 <- makeGlmer(z ~ x + (x|g), family="poisson", fixef=b, VarCorr=V2, data=rval) expect_error(getData(model3), NA) model4 <- makeGlmer(cbind(z, 12) ~ x + (x|g), family="poisson", fixef=b, VarCorr=V2, data=X) expect_error(getData(model4), NA) })