test_that("Total outputs", { skip_on_cran() set.seed(2022) #--- supply quantile and covariance matrices ---# mats <- calculate_pop(mraster = mraster, PCA = TRUE) #--- supply quantile and covariance matrices ---# expect_message(m <- calculate_lhsOpt(mats = mats), "Your optimum estimated sample size based on KL divergence is: 40") expect_equal(nrow(m), 10L) expect_equal(ncol(m), 7L) expect_equal(names(m), c("n", "mean_dist", "sd_dist", "min_S", "max_S", "mean_KL", "sd_KL")) })