R Under development (unstable) (2024-10-09 r87215 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > suppressPackageStartupMessages(library(sf)) > # nc = st_read(system.file("gpkg/nc.gpkg", package="sf")) > nc = st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE) > nc_checked = st_transform(nc, 32119, check = TRUE) > ncm = st_transform(nc, 32119) > > x = st_transform(nc[1:10,], 32119) > st_distance(x) Units: [m] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0.00 0.00 25651.99 440561.48 299772.34 361529.73 419671.66 [2,] 0.00 0.00 0.00 409429.44 268945.05 332590.52 388545.58 [3,] 25651.99 0.00 0.00 367556.52 227018.38 290298.04 346669.14 [4,] 440561.48 409429.44 367556.52 0.00 67226.86 45537.62 0.00 [5,] 299772.34 268945.05 227018.38 67226.86 0.00 0.00 46527.56 [6,] 361529.73 332590.52 290298.04 45537.62 0.00 0.00 30213.17 [7,] 419671.66 388545.58 346669.14 0.00 46527.56 30213.17 0.00 [8,] 384593.29 354295.06 312351.76 16130.19 11926.86 0.00 0.00 [9,] 262353.97 231217.73 189310.73 140455.97 0.00 64606.27 119564.00 [10,] 71138.53 41943.71 0.00 330752.58 190183.42 252373.26 309863.33 [,8] [,9] [,10] [1,] 384593.29 262353.97 71138.53 [2,] 354295.06 231217.73 41943.71 [3,] 312351.76 189310.73 0.00 [4,] 16130.19 140455.97 330752.58 [5,] 11926.86 0.00 190183.42 [6,] 0.00 64606.27 252373.26 [7,] 0.00 119564.00 309863.33 [8,] 0.00 85533.33 275391.07 [9,] 85533.33 0.00 152489.45 [10,] 275391.07 152489.45 0.00 > > st_is_valid(nc) [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [46] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [76] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [91] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE > > st_is_empty(st_sfc(st_point(), st_linestring())) [1] TRUE TRUE > > ops = c("intersects", #"disjoint", + "touches", "crosses", "within", "contains", "overlaps", "equals", "covers", "covered_by", "equals_exact") > for (op in ops) { + x = sf:::st_geos_binop(op, ncm[1:50,], ncm[51:100,], 0, NA_character_, FALSE) + x = sf:::st_geos_binop(op, ncm[1:50,], ncm[51:100,], 0, NA_character_, TRUE) + } > > ops = c("intersects", #"disjoint", + "touches", "crosses", "within", "contains", "overlaps", "covers", "covered_by") > df = data.frame(ops = ops) > df$equal = NA > for (op in ops) + df[df$ops == op, "equal"] = identical( + sf:::st_geos_binop(op, ncm[1:50,], ncm[51:100,], 0, NA_character_, TRUE, FALSE), + sf:::st_geos_binop(op, ncm[1:50,], ncm[51:100,], 0, NA_character_, TRUE, TRUE) + ) > df ops equal 1 intersects TRUE 2 touches TRUE 3 crosses TRUE 4 within TRUE 5 contains TRUE 6 overlaps TRUE 7 covers TRUE 8 covered_by TRUE > > st_contains_properly(ncm[1:3,], ncm[1:3]) Sparse geometry binary predicate list of length 3, where the predicate was `contains_properly' 1: (empty) 2: (empty) 3: (empty) > > st_combine(nc) Geometry set for 1 feature Geometry type: MULTIPOLYGON Dimension: XY Bounding box: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965 Geodetic CRS: NAD27 MULTIPOLYGON (((-81.47276 36.23436, -81.54084 3... > > st_dimension(st_sfc(st_point(0:1), st_linestring(rbind(c(0,0),c(1,1))), + st_polygon(list(rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0)))))) [1] 0 1 2 > > ncbb = st_as_sfc(st_bbox(nc)) > g = st_make_grid(ncbb) > x = st_intersection(nc, g) Warning message: attribute variables are assumed to be spatially constant throughout all geometries > x = st_intersection(g, nc) > > ls = st_sfc(st_linestring(rbind(c(0,0),c(0,1))), + st_linestring(rbind(c(0,0),c(10,0)))) > > suppressWarnings(RNGversion("3.5.3")) > set.seed(13531) > > st_line_sample(ls, density = 1, type = "random") Geometry set for 2 features Geometry type: MULTIPOINT Dimension: XY Bounding box: xmin: 0 ymin: 0 xmax: 6.880179 ymax: 0.8878369 CRS: NA MULTIPOINT ((0 0.8878369)) MULTIPOINT ((0.2986488 0), (2.48417 0), (2.5678... > > g = st_make_grid(ncbb, n = c(20,10)) > > a1 = st_interpolate_aw(nc["BIR74"], g, FALSE) Warning message: In st_interpolate_aw.sf(nc["BIR74"], g, FALSE) : st_interpolate_aw assumes attributes are constant or uniform over areas of x > sum(a1$BIR74) / sum(nc$BIR74) # not close to one: property is assumed spatially intensive [1] 1.436123 > a2 = st_interpolate_aw(nc["BIR74"], g, extensive = TRUE) Warning message: In st_interpolate_aw.sf(nc["BIR74"], g, extensive = TRUE) : st_interpolate_aw assumes attributes are constant or uniform over areas of x > sum(a2$BIR74) / sum(nc$BIR74) [1] 1 > > # missing x: > g = st_make_grid(offset = c(0,0), cellsize = c(1,1), n = c(10,10)) > g = st_make_grid(what = "centers") > length(g) [1] 648 > g = st_make_grid(what = "corners") > length(g) [1] 703 > > g1 = st_make_grid(ncbb, 0.1, what = "polygons", square = FALSE) > g2 = st_make_grid(ncbb, 0.1, what = "points", square = FALSE) > > # st_line_merge: > mls = st_multilinestring(list(rbind(c(0,0), c(1,1)), rbind(c(2,0), c(1,1)))) > st_line_merge(mls) LINESTRING (0 0, 1 1, 2 0) > > if (isTRUE(try(compareVersion(sf_extSoftVersion()["GEOS"], "3.5.0") > -1, silent = TRUE))) { + # voronoi: + set.seed(1) + x = st_multipoint(matrix(runif(10),,2)) + box = st_polygon(list(rbind(c(0,0),c(1,0),c(1,1),c(0,1),c(0,0)))) + v = st_sfc(st_voronoi(x, st_sfc(box))) + plot(v, col = 0, border = 1, axes = TRUE) + plot(box, add = TRUE, col = 0, border = 1) # a larger box is returned, as documented + plot(x, add = TRUE, col = 'red', cex=2, pch=16) + plot(st_intersection(st_cast(v), box)) # clip to smaller box + plot(x, add = TRUE, col = 'red', cex=2, pch=16) + + v = st_voronoi(x) + print(class(v)) + v = st_sfc(st_voronoi(st_sfc(x))) + print(class(v)) + v = st_voronoi(st_sf(a = 1, geom = st_sfc(x))) + print(class(v)) + } [1] "XY" "GEOMETRYCOLLECTION" "sfg" [1] "sfc_GEOMETRYCOLLECTION" "sfc" [1] "sf" "data.frame" > > i = st_intersects(ncm, ncm[1:88,]) > all.equal(i, t(t(i))) [1] TRUE > > # check use of pattern in st_relate: > sfc = st_as_sfc(st_bbox(st_sfc(st_point(c(0,0)), st_point(c(3,3))))) > grd = st_make_grid(sfc, n = c(3,3)) > st_intersects(grd) Sparse geometry binary predicate list of length 9, where the predicate was `intersects' 1: 1, 2, 4, 5 2: 1, 2, 3, 4, 5, 6 3: 2, 3, 5, 6 4: 1, 2, 4, 5, 7, 8 5: 1, 2, 3, 4, 5, 6, 7, 8, 9 6: 2, 3, 5, 6, 8, 9 7: 4, 5, 7, 8 8: 4, 5, 6, 7, 8, 9 9: 5, 6, 8, 9 > st_relate(grd, pattern = "****1****") Sparse geometry binary predicate list of length 9, where the predicate was `relate_pattern' 1: 1, 2, 4 2: 1, 2, 3, 5 3: 2, 3, 6 4: 1, 4, 5, 7 5: 2, 4, 5, 6, 8 6: 3, 5, 6, 9 7: 4, 7, 8 8: 5, 7, 8, 9 9: 6, 8, 9 > st_relate(grd, pattern = "****0****") Sparse geometry binary predicate list of length 9, where the predicate was `relate_pattern' 1: 5 2: 4, 6 3: 5 4: 2, 8 5: 1, 3, 7, 9 6: 2, 8 7: 5 8: 4, 6 9: 5 > st_rook = function(a, b = a, ...) st_relate(a, b, pattern = "F***1****", ...) > st_rook(grd, sparse = FALSE) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE [2,] TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE [3,] FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE [4,] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE [5,] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE [6,] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE [7,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE [8,] FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE [9,] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE > > #if (Sys.getenv("USER") %in% c("edzer", "travis")) { # memory leaks: > try(st_relate(st_point(), st_point(), pattern = "FF*FF****")) # error: use st_disjoint Error : use st_disjoint for this pattern > #} > > a = st_is_within_distance(nc[c(1:3,20),], nc[1:3,], 100000, sparse = FALSE) > b = st_is_within_distance(nc[c(1:3,20),], nc[1:3,], units::set_units(100000, m), sparse = FALSE) > all.equal(a, b) [1] TRUE > x = st_is_within_distance(nc[1:3,], nc[1:5,], 100000) > y = st_is_within_distance(nc[1:3,], nc[1:5,], units::set_units(100, km)) > all.equal(x, y) [1] TRUE > > nc_3857 = st_transform(nc, 3857) > a = st_is_within_distance(nc_3857[c(1:3,20),], nc_3857[1:3,], 100000, sparse = FALSE) > b = st_is_within_distance(nc_3857[c(1:3,20),], nc_3857[1:3,], units::set_units(100000, m), sparse = FALSE) > all.equal(a, b) [1] TRUE > x = st_is_within_distance(nc_3857, nc_3857, 100000) > y = st_is_within_distance(nc_3857, nc_3857, units::set_units(100, km)) > all.equal(x, y) [1] TRUE > > pe = st_sfc(st_point()) > p = st_sfc(st_point(c(0,0)), st_point(c(0,1)), st_point(c(0,2))) > st_distance(p, p) [,1] [,2] [,3] [1,] 0 1 2 [2,] 1 0 1 [3,] 2 1 0 > st_distance(p, pe) [,1] [1,] NA [2,] NA [3,] NA > st_distance(p, p, by_element = TRUE) [1] 0 0 0 > st_crs(p) = 4326 > st_distance(p, p[c(2,3,1)], by_element = TRUE) Units: [m] [1] 111195.1 111195.1 222390.2 > p = st_transform(p, 3587) > st_distance(p, p[c(2,3,1)], by_element = TRUE) Units: [m] [1] 144589.5 142873.3 287462.8 > > # from https://github.com/r-spatial/sf/issues/458 : > pts <- st_sfc(st_point(c(.5,.5)), st_point(c(1.5, 1.5)), st_point(c(2.5, 2.5))) > pol <- st_polygon(list(rbind(c(0,0), c(2,0), c(2,2), c(0,2), c(0,0)))) > pol_df <- data.frame(id = 1) > st_geometry(pol_df) <- st_sfc(pol) > st_intersects(pts, pol_df[pol_df$id == 2,]) # with empty sf/sfc Sparse geometry binary predicate list of length 3, where the predicate was `intersects' 1: (empty) 2: (empty) 3: (empty) > st_intersects(pts, pol_df[pol_df$id == 2,], sparse = FALSE) # with empty sf/sfc [1,] [2,] [3,] > > # st_node > l = st_linestring(rbind(c(0,0), c(1,1), c(0,1), c(1,0), c(0,0))) > st_node(l) MULTILINESTRING ((0 0, 0.5 0.5), (0.5 0.5, 1 1, 0 1, 0.5 0.5), (0.5 0.5, 1 0, 0 0)) > st_node(st_sfc(l)) Geometry set for 1 feature Geometry type: MULTILINESTRING Dimension: XY Bounding box: xmin: 0 ymin: 0 xmax: 1 ymax: 1 CRS: NA MULTILINESTRING ((0 0, 0.5 0.5), (0.5 0.5, 1 1,... > st_node(st_sf(a = 1, st_sfc(l))) Simple feature collection with 1 feature and 1 field Geometry type: MULTILINESTRING Dimension: XY Bounding box: xmin: 0 ymin: 0 xmax: 1 ymax: 1 CRS: NA a st_sfc.l. 1 1 MULTILINESTRING ((0 0, 0.5 ... > > # print.sgbp: > (lst = st_disjoint(nc, nc)) Sparse geometry binary predicate list of length 100, where the predicate was `disjoint' first 10 elements: 1: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... 2: 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ... 3: 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, ... 4: 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, ... 5: 1, 2, 3, 4, 7, 8, 10, 11, 12, 13, ... 6: 1, 2, 3, 4, 7, 9, 10, 11, 12, 13, ... 7: 1, 2, 3, 5, 6, 9, 10, 11, 12, 13, ... 8: 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, ... 9: 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, ... 10: 1, 2, 4, 5, 6, 7, 8, 9, 11, 13, ... > # dim.sgbp: > dim(lst) [1] 100 100 > # as.matrix.sgbp: > as.matrix(lst)[1:5, 1:5] [,1] [,2] [,3] [,4] [,5] [1,] FALSE FALSE TRUE TRUE TRUE [2,] FALSE FALSE FALSE TRUE TRUE [3,] TRUE FALSE FALSE TRUE TRUE [4,] TRUE TRUE TRUE FALSE TRUE [5,] TRUE TRUE TRUE TRUE FALSE > # negate: > !lst Sparse geometry binary predicate list of length 100, where the predicate was `!disjoint' first 10 elements: 1: 1, 2, 18, 19 2: 1, 2, 3, 18 3: 2, 3, 10, 18, 23, 25 4: 4, 7, 56 5: 5, 6, 9, 16, 28 6: 5, 6, 8, 28 7: 4, 7, 8, 17 8: 6, 7, 8, 17, 20, 21 9: 5, 9, 15, 16, 24, 31 10: 3, 10, 12, 25, 26 > # as.data.frame: > head(as.data.frame(lst), 10) row.id col.id 1 1 3 2 1 4 3 1 5 4 1 6 5 1 7 6 1 8 7 1 9 8 1 10 9 1 11 10 1 12 > > # snap: > nc1 = st_transform(nc, 32119) > g = st_make_grid(nc1, c(5000,5000), what = "centers") > s = st_snap(nc1[1:3,], g, 2501*sqrt(2)) > sfg = st_snap(st_geometry(nc1)[[1]], g, 2501*sqrt(2)) > sfg = st_snap(st_geometry(nc1)[[1]], st_combine(g), 2501*sqrt(2)) > > # Hausdorff distance: http://geos.refractions.net/ro/doxygen_docs/html/classgeos_1_1algorithm_1_1distance_1_1DiscreteHausdorffDistance.html > A = st_as_sfc("LINESTRING (0 0, 100 0, 10 100, 10 100)") > B = st_as_sfc("LINESTRING (0 100, 0 10, 80 10)") > st_distance(c(A,B)) [,1] [,2] [1,] 0.000000 8.176236 [2,] 8.176236 0.000000 > st_distance(c(A,B), which = "Hausdorff") [,1] [,2] [1,] 0.00000 22.36068 [2,] 22.36068 0.00000 > st_distance(c(A,B), which = "Hausdorff", par = 0.001) [,1] [,2] [1,] 2.929643e-14 4.789000e+01 [2,] 4.789000e+01 2.131628e-14 > LE = st_as_sfc("LINESTRING EMPTY") > st_distance(c(A, LE), which = "Hausdorff", par = 0.001) [,1] [,2] [1,] 2.929643e-14 NA [2,] NA NA > > # one-argument st_intersection and st_difference: > set.seed(131) > m = rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0)) > p = st_polygon(list(m)) > n = 100 > l = vector("list", n) > for (i in 1:n) + l[[i]] = p + 10 * runif(2) > s = st_sfc(l) > plot(s, col = sf.colors(categorical = TRUE, alpha = .5)) > d = st_difference(s) # sequential differences: s1, s2-s1, s3-s2-s1, ... > plot(d, col = sf.colors(categorical = TRUE, alpha = .5)) > i = st_intersection(s) # all intersections > plot(i, col = sf.colors(categorical = TRUE, alpha = .5)) > summary(lengths(st_overlaps(s, s))) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00 2.00 3.50 3.66 5.00 8.00 > summary(lengths(st_overlaps(d, d))) Min. 1st Qu. Median Mean 3rd Qu. Max. 0 0 0 0 0 0 > summary(lengths(st_overlaps(i, i))) Min. 1st Qu. Median Mean 3rd Qu. Max. 0 0 0 0 0 0 > > sf = st_sf(s) > i = st_intersection(sf) # all intersections > plot(i["n.overlaps"]) > summary(i$n.overlaps - lengths(i$origins)) Min. 1st Qu. Median Mean 3rd Qu. Max. 0 0 0 0 0 0 > > # st_nearest_points: > pt1 = st_point(c(.1,.1)) > pt2 = st_point(c(.9,.9)) > b1 = st_buffer(pt1, 0.1) > b2 = st_buffer(pt2, 0.1) > plot(b1, xlim = c(0,1), ylim = c(0,1)) > plot(b2, add = TRUE) > (ls0 = try(st_nearest_points(b1, b2))) # sfg Geometry set for 1 feature Geometry type: LINESTRING Dimension: XY Bounding box: xmin: 0.1707107 ymin: 0.1707107 xmax: 0.8292893 ymax: 0.8292893 CRS: NA LINESTRING (0.1707107 0.1707107, 0.8292893 0.82... > (ls = try(st_nearest_points(st_sfc(b1), st_sfc(b2)))) # sfc Geometry set for 1 feature Geometry type: LINESTRING Dimension: XY Bounding box: xmin: 0.1707107 ymin: 0.1707107 xmax: 0.8292893 ymax: 0.8292893 CRS: NA LINESTRING (0.1707107 0.1707107, 0.8292893 0.82... > (ls = try(st_nearest_points(st_sfc(b1), st_sfc(b2), pairwise = TRUE))) # sfc Geometry set for 1 feature Geometry type: LINESTRING Dimension: XY Bounding box: xmin: 0.1707107 ymin: 0.1707107 xmax: 0.8292893 ymax: 0.8292893 CRS: NA LINESTRING (0.1707107 0.1707107, 0.8292893 0.82... > identical(ls0, ls) [1] TRUE > # plot(ls, add = TRUE, col = 'red') > > nc = read_sf(system.file("gpkg/nc.gpkg", package="sf")) > plot(st_geometry(nc)) > ls = try(st_nearest_points(nc[1,], nc)) > # plot(ls, col = 'red', add = TRUE) > pts = st_cast(ls, "POINT") # gives all start & end points There were 50 or more warnings (use warnings() to see the first 50) > # starting, "from" points, corresponding to x: > plot(pts[seq(1, 200, 2)], add = TRUE, col = 'blue') > # ending, "to" points, corresponding to y: > plot(pts[seq(2, 200, 2)], add = TRUE, col = 'red') > > # points to nearest features > ls1 = st_linestring(rbind(c(0,0), c(1,0))) > ls2 = st_linestring(rbind(c(0,0.1), c(1,0.1))) > ls3 = st_linestring(rbind(c(0,1), c(1,1))) > (l = st_sfc(ls1, ls2, ls3)) Geometry set for 3 features Geometry type: LINESTRING Dimension: XY Bounding box: xmin: 0 ymin: 0 xmax: 1 ymax: 1 CRS: NA LINESTRING (0 0, 1 0) LINESTRING (0 0.1, 1 0.1) LINESTRING (0 1, 1 1) > > p1 = st_point(c(0.1, -0.1)) > p2 = st_point(c(0.1, 0.11)) > p3 = st_point(c(0.1, 0.09)) > p4 = st_point(c(0.1, 0.9)) > p5 = st_point() > > (p = st_sfc(p1, p2, p3, p4, p5)) Geometry set for 5 features (with 1 geometry empty) Geometry type: POINT Dimension: XY Bounding box: xmin: 0.1 ymin: -0.1 xmax: 0.1 ymax: 0.9 CRS: NA POINT (0.1 -0.1) POINT (0.1 0.11) POINT (0.1 0.09) POINT (0.1 0.9) POINT EMPTY > #st_nearest_points(p, l) > n = try(st_nearest_feature(p,l)) > if (!inherits(n, "try-error")) { + print(st_nearest_points(p, l[n], pairwise = TRUE)) + print(st_nearest_feature(p, l)) + print(st_nearest_feature(p, st_sfc())) + print(st_nearest_feature(st_sfc(), l)) + } Geometry set for 5 features (with 1 geometry empty) Geometry type: LINESTRING Dimension: XY Bounding box: xmin: 0.1 ymin: -0.1 xmax: 0.1 ymax: 1 CRS: NA LINESTRING (0.1 -0.1, 0.1 0) LINESTRING (0.1 0.11, 0.1 0.1) LINESTRING (0.1 0.09, 0.1 0.1) LINESTRING (0.1 0.9, 0.1 1) LINESTRING EMPTY [1] 1 2 2 3 NA [1] NA NA NA NA NA integer(0) > > # can do centroid of empty geom: > st_centroid(st_polygon()) POINT EMPTY > > #999: > pt = data.frame(x=1:2, y=1:2,a=letters[1:2]) > pt = st_as_sf(pt, coords=c("x","y")) > > bf =st_buffer(pt, dist=0.3) > > st_within(pt,bf, sparse=FALSE) [,1] [,2] [1,] TRUE FALSE [2,] FALSE TRUE > st_within(pt[1,], bf[1,], sparse = FALSE) [,1] [1,] TRUE > st_relate(pt[1,], bf[1,], pattern = "T*F**F***", sparse = FALSE) [,1] [1,] TRUE > > sf:::is_symmetric(pattern = "010121010") [1] TRUE > sf:::is_symmetric(pattern = "010121021") [1] FALSE > > st_intersects(st_point(0:1), st_point(2:3)) # sfg method Sparse geometry binary predicate list of length 1, where the predicate was `intersects' 1: (empty) > > if (isTRUE(try(compareVersion(sf_extSoftVersion()["GEOS"], "3.7.0") > -1, silent = TRUE))) { + ls = st_linestring(rbind(c(1,1), c(2,2), c(3,3))) + print(st_reverse(ls)) + print(st_reverse(st_sfc(ls))) + print(st_reverse(st_sf(a = 2, geom = st_sfc(ls)))) + } LINESTRING (3 3, 2 2, 1 1) Geometry set for 1 feature Geometry type: LINESTRING Dimension: XY Bounding box: xmin: 1 ymin: 1 xmax: 3 ymax: 3 CRS: NA LINESTRING (3 3, 2 2, 1 1) Simple feature collection with 1 feature and 1 field Geometry type: LINESTRING Dimension: XY Bounding box: xmin: 1 ymin: 1 xmax: 3 ymax: 3 CRS: NA a geom 1 2 LINESTRING (3 3, 2 2, 1 1) > > p = st_polygon(list(rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0)))) > y = st_sfc(p) > x = st_sfc(p + 1.001) > > x %>% st_set_precision(0) %>% st_intersects(y) Sparse geometry binary predicate list of length 1, where the predicate was `intersects' 1: (empty) > x %>% st_set_precision(10000) %>% st_intersects(y) Sparse geometry binary predicate list of length 1, where the predicate was `intersects' 1: (empty) > x %>% st_set_precision(1000) %>% st_intersects(y) Sparse geometry binary predicate list of length 1, where the predicate was `intersects' 1: (empty) > x %>% st_set_precision(501) %>% st_intersects(y) # no Sparse geometry binary predicate list of length 1, where the predicate was `intersects' 1: (empty) > x %>% st_set_precision(500) %>% st_intersects(y) # yes Sparse geometry binary predicate list of length 1, where the predicate was `intersects' 1: 1 > x %>% st_set_precision(100) %>% st_intersects(y) Sparse geometry binary predicate list of length 1, where the predicate was `intersects' 1: 1 > x %>% st_set_precision(10) %>% st_intersects(y) Sparse geometry binary predicate list of length 1, where the predicate was `intersects' 1: 1 > > p1 = st_point(0:1) > p2 = st_point(2:1) > p = st_sf(a = letters[1:8], geom = st_sfc(p1, p1, p2, p1, p1, p2, p2, p1)) > st_equals(p) Sparse geometry binary predicate list of length 8, where the predicate was `equals' 1: 1, 2, 4, 5, 8 2: 1, 2, 4, 5, 8 3: 3, 6, 7 4: 1, 2, 4, 5, 8 5: 1, 2, 4, 5, 8 6: 3, 6, 7 7: 3, 6, 7 8: 1, 2, 4, 5, 8 > st_equals(p, remove_self = TRUE) Sparse geometry binary predicate list of length 8, where the predicate was `equals', with remove_self = TRUE 1: 2, 4, 5, 8 2: 1, 4, 5, 8 3: 6, 7 4: 1, 2, 5, 8 5: 1, 2, 4, 8 6: 3, 7 7: 3, 6 8: 1, 2, 4, 5 > (u = st_equals(p, retain_unique = TRUE)) Sparse geometry binary predicate list of length 8, where the predicate was `equals', with retain_unique = TRUE 1: 2, 4, 5, 8 2: 4, 5, 8 3: 6, 7 4: 5, 8 5: 8 6: 7 7: (empty) 8: (empty) > # retain the records with unique geometries: > p[-unlist(u),] Simple feature collection with 2 features and 1 field Geometry type: POINT Dimension: XY Bounding box: xmin: 0 ymin: 1 xmax: 2 ymax: 1 CRS: NA a geom 1 a POINT (0 1) 3 c POINT (2 1) > > proc.time() user system elapsed 26.37 0.67 27.11