# This test file tests the `dist_matrix` and `dist_pairwise` functions # These two functions are simple dynamic programming algorithms for computing pairwise distances and are themselves used to validate # the RadixTree imeplementation (see test_radix_tree.R) library(seqtrie) library(stringi) library(stringdist) library(Biostrings) library(dplyr) # Use 2 threads on github actions and CRAN, 4 threads locally IS_LOCAL <- Sys.getenv("IS_LOCAL") != "" NTHREADS <- ifelse(IS_LOCAL, 4, 2) NITER <- ifelse(IS_LOCAL, 4, 1) NSEQS <- 10000 MAXSEQLEN <- 200 CHARSET <- "ACGT" random_strings <- function(N, charset = "abcdefghijklmnopqrstuvwxyz") { charset_stri <- paste0("[", charset, "]") len <- sample(0:MAXSEQLEN, N, replace=TRUE) result <- lapply(0:MAXSEQLEN, function(x) { nx <- sum(len == x) if(nx == 0) return(character()) stringi::stri_rand_strings(nx, x, pattern = charset_stri) }) sample(unlist(result)) } mutate_strings <- function(x, prob = 0.025, indel_prob = 0.025, charset = "abcdefghijklmnopqrstuvwxyz") { charset <- unlist(strsplit(charset, "")) xsplit <- strsplit(x, "") sapply(xsplit, function(a) { r <- runif(length(a)) < prob a[r] <- sample(charset, sum(r), replace=TRUE) ins <- runif(length(a)) < indel_prob a[ins] <- paste0(sample(charset, sum(ins), replace=TRUE), sample(charset, sum(ins), replace=TRUE)) del <- runif(length(a)) < indel_prob a[del] <- "" paste0(a, collapse = "") }) } # Biostrings notes: # subject (target) must be of length 1 or equal to pattern (query) # To get a distance matrix, iterate over target and perform a column bind # special_zero_case -- if both query and target are empty, Biostrings fails with an error pairwiseAlignmentFix <- function(pattern, subject, ...) { results <- rep(0, length(subject)) special_zero_case <- nchar(pattern) == 0 & nchar(subject) == 0 if(all(special_zero_case)) { results } else { results[!special_zero_case] <- Biostrings::pairwiseAlignment(pattern=pattern[!special_zero_case], subject=subject[!special_zero_case], ...) results } } biostrings_matrix_global <- function(query, target, cost_matrix, gap_cost, gap_open_cost = 0) { substitutionMatrix <- -cost_matrix lapply(query, function(x) { query2 <- rep(x, length(target)) -pairwiseAlignmentFix(pattern=query2, subject=target, substitutionMatrix = substitutionMatrix, gapOpening=gap_open_cost, gapExtension=gap_cost, scoreOnly=TRUE, type="global") }) %>% do.call(rbind, .) } biostrings_pairwise_global <- function(query, target, cost_matrix, gap_cost, gap_open_cost = 0) { substitutionMatrix <- -cost_matrix -pairwiseAlignment(pattern=query, subject=target, substitutionMatrix = substitutionMatrix,gapOpening=gap_open_cost, gapExtension=gap_cost, scoreOnly=TRUE, type="global") } biostrings_matrix_anchored <- function(query, target, query_size, target_size, cost_matrix, gap_cost, gap_open_cost = 0) { substitutionMatrix <- -cost_matrix lapply(seq_along(query), function(i) { query2 <- substring(query[i], 1, query_size[i,,drop=TRUE]) target2 <- substring(target, 1, target_size[i,,drop=TRUE]) -pairwiseAlignmentFix(pattern=query2, subject=target2, substitutionMatrix = substitutionMatrix, gapOpening=gap_open_cost, gapExtension=gap_cost, scoreOnly=TRUE, type="global") }) %>% do.call(rbind, .) } biostrings_pairwise_anchored <- function(query, target, query_size, target_size, cost_matrix, gap_cost, gap_open_cost = 0) { substitutionMatrix <- -cost_matrix query2 <- substring(query, 1, query_size) target2 <- substring(target, 1, target_size) -pairwiseAlignmentFix(pattern=query2, subject=target2, substitutionMatrix = substitutionMatrix, gapOpening=gap_open_cost, gapExtension=gap_cost, scoreOnly=TRUE, type="global") } for(. in 1:NITER) { print("Checking hamming search correctness") local({ # Note: seqtrie returns `NA_integer_` for hamming distance when the lengths are different # whereas stringdist returns `Inf` # This is why we need to replace `NA_integer_` with `Inf` when comparing results target <- c(random_strings(NSEQS, CHARSET),"") %>% unique query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique # Check matrix results results_seqtrie <- dist_matrix(query, target, mode = "hamming", nthreads=NTHREADS) results_seqtrie[is.na(results_seqtrie)] <- Inf results_stringdist <- stringdist::stringdistmatrix(query, target, method = "hamming", nthread=NTHREADS) stopifnot(all(results_seqtrie == results_stringdist)) # Check pairwise results query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "hamming", nthreads=NTHREADS) results_seqtrie[is.na(results_seqtrie)] <- Inf results_stringdist <- stringdist::stringdist(query_pairwise, target, method = "hamming", nthread=NTHREADS) stopifnot(all(results_seqtrie == results_stringdist)) }) print("Checking levenshtein search correctness") local({ target <- c(random_strings(NSEQS, CHARSET),"") %>% unique query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique # Check matrix results results_seqtrie <- dist_matrix(query, target, mode = "levenshtein", nthreads=NTHREADS) results_stringdist <- stringdist::stringdistmatrix(query, target, method = "lv", nthread=NTHREADS) stopifnot(all(results_seqtrie == results_stringdist)) # Check pairwise results query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "levenshtein", nthreads=NTHREADS) results_stringdist <- stringdist::stringdist(query_pairwise, target, method = "lv", nthread=NTHREADS) stopifnot(all(results_seqtrie == results_stringdist)) }) print("Checking anchored search correctness") local({ # There is no anchored search in stringdist (or elsewhere). To get the same results, we substring the query and target sequences # By the results of the seqtrie anchored search and then compare the results target <- c(random_strings(NSEQS, CHARSET),"") %>% unique query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique # Check matrix results results_seqtrie <- dist_matrix(query, target, mode = "anchored", nthreads=NTHREADS) query_size <- attr(results_seqtrie, "query_size") target_size <- attr(results_seqtrie, "target_size") results_stringdist <- lapply(seq_along(query), function(i) { query_size2 <- query_size[i,,drop=TRUE] target_size2 <- target_size[i,,drop=TRUE] query2 <- substring(query[i], 1, query_size2) # query[i] is recycled target2 <- substring(target, 1, target_size2) stringdist::stringdist(query2, target2, method = "lv", nthread=NTHREADS) }) %>% do.call(rbind, .) stopifnot(all(results_seqtrie == results_stringdist)) # Check pairwise results query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "anchored", nthreads=NTHREADS) query_size <- attr(results_seqtrie, "query_size") target_size <- attr(results_seqtrie, "target_size") query2 <- substring(query_pairwise, 1, query_size) target2 <- substring(target, 1, target_size) results_stringdist <- stringdist::stringdist(query2, target2, method = "lv", nthread=NTHREADS) stopifnot(all(results_seqtrie == results_stringdist)) }) print("Checking global search with linear gap for correctness") local({ target <- c(random_strings(NSEQS, CHARSET),"") %>% unique query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique # Check matrix results cost_matrix <- matrix(sample(1:3, size = nchar(CHARSET)^2, replace=TRUE), nrow=nchar(CHARSET)) diag(cost_matrix) <- 0 colnames(cost_matrix) <- rownames(cost_matrix) <- strsplit(CHARSET, "")[[1]] gap_cost <- sample(1:3, size = 1) results_seqtrie <- dist_matrix(query, target, mode = "levenshtein", cost_matrix = cost_matrix, gap_cost = gap_cost, nthreads=NTHREADS) results_biostrings <- biostrings_matrix_global(query, target, cost_matrix = cost_matrix, gap_cost = gap_cost) stopifnot(all(results_seqtrie == results_biostrings)) # Check pairwise results query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "levenshtein", cost_matrix = cost_matrix, gap_cost = gap_cost, nthreads=NTHREADS) results_biostrings <- biostrings_pairwise_global(query_pairwise, target, cost_matrix = cost_matrix, gap_cost = gap_cost) stopifnot(all(results_seqtrie == results_biostrings)) }) print("Checking anchored search with linear gap for correctness") local({ target <- c(random_strings(NSEQS, CHARSET),"") %>% unique query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique # Check matrix results cost_matrix <- matrix(sample(1:3, size = nchar(CHARSET)^2, replace=TRUE), nrow=nchar(CHARSET)) diag(cost_matrix) <- 0 colnames(cost_matrix) <- rownames(cost_matrix) <- strsplit(CHARSET, "")[[1]] gap_cost <- sample(1:3, size = 1) results_seqtrie <- dist_matrix(query, target, mode = "anchored", cost_matrix = cost_matrix, gap_cost = gap_cost, nthreads=NTHREADS) query_size <- attr(results_seqtrie, "query_size") target_size <- attr(results_seqtrie, "target_size") results_biostrings <- biostrings_matrix_anchored(query, target, query_size, target_size, cost_matrix = cost_matrix, gap_cost = gap_cost) stopifnot(all(results_seqtrie == results_biostrings)) # Check pairwise results query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "anchored", cost_matrix = cost_matrix, gap_cost = gap_cost, nthreads=NTHREADS) query_size <- attr(results_seqtrie, "query_size") target_size <- attr(results_seqtrie, "target_size") results_biostrings <- biostrings_pairwise_anchored(query_pairwise, target, query_size, target_size, cost_matrix = cost_matrix, gap_cost = gap_cost) stopifnot(all(results_seqtrie == results_biostrings)) }) print("Checking global search with affine gap for correctness") local({ target <- c(random_strings(NSEQS, CHARSET),"") %>% unique query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique # Check matrix results cost_matrix <- matrix(sample(1:3, size = nchar(CHARSET)^2, replace=TRUE), nrow=nchar(CHARSET)) diag(cost_matrix) <- 0 colnames(cost_matrix) <- rownames(cost_matrix) <- strsplit(CHARSET, "")[[1]] gap_cost <- sample(1:3, size = 1) gap_open_cost <- sample(1:3, size = 1) results_seqtrie <- dist_matrix(query, target, mode = "levenshtein", cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cos=gap_open_cost, nthreads=NTHREADS) results_biostrings <- biostrings_matrix_global(query, target, cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost) stopifnot(all(results_seqtrie == results_biostrings)) # Check pairwise results query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "levenshtein", cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost, nthreads=NTHREADS) results_biostrings <- biostrings_pairwise_global(query_pairwise, target, cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost) stopifnot(all(results_seqtrie == results_biostrings)) }) print("Checking anchored search with affine gap for correctness") local({ target <- c(random_strings(NSEQS, CHARSET),"") %>% unique query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique # Check matrix results cost_matrix <- matrix(sample(1:3, size = nchar(CHARSET)^2, replace=TRUE), nrow=nchar(CHARSET)) diag(cost_matrix) <- 0 colnames(cost_matrix) <- rownames(cost_matrix) <- strsplit(CHARSET, "")[[1]] gap_cost <- sample(1:3, size = 1) gap_open_cost <- sample(1:3, size = 1) results_seqtrie <- dist_matrix(query, target, mode = "anchored", cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost, nthreads=NTHREADS) query_size <- attr(results_seqtrie, "query_size") target_size <- attr(results_seqtrie, "target_size") results_biostrings <- biostrings_matrix_anchored(query, target, query_size, target_size, cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost) stopifnot(all(results_seqtrie == results_biostrings)) # Check pairwise results query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "anchored", cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost, nthreads=NTHREADS) query_size <- attr(results_seqtrie, "query_size") target_size <- attr(results_seqtrie, "target_size") results_biostrings <- biostrings_pairwise_anchored(query_pairwise, target, query_size, target_size, cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost) stopifnot(all(results_seqtrie == results_biostrings)) }) }