R Under development (unstable) (2024-01-25 r85826 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # This test file tests the `dist_matrix` and `dist_pairwise` functions > # These two functions are simple dynamic programming algorithms for computing pairwise distances and are themselves used to validate > # the RadixTree imeplementation (see test_radix_tree.R) > > library(seqtrie) > library(stringi) > library(stringdist) > library(Biostrings) Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Loading required package: stats4 Attaching package: 'S4Vectors' The following object is masked from 'package:utils': findMatches The following objects are masked from 'package:base': I, expand.grid, unname Loading required package: IRanges Attaching package: 'IRanges' The following object is masked from 'package:grDevices': windows Loading required package: XVector Loading required package: GenomeInfoDb Attaching package: 'Biostrings' The following object is masked from 'package:base': strsplit > library(dplyr) Attaching package: 'dplyr' The following objects are masked from 'package:Biostrings': collapse, intersect, setdiff, setequal, union The following object is masked from 'package:GenomeInfoDb': intersect The following object is masked from 'package:XVector': slice The following objects are masked from 'package:IRanges': collapse, desc, intersect, setdiff, slice, union The following objects are masked from 'package:S4Vectors': first, intersect, rename, setdiff, setequal, union The following objects are masked from 'package:BiocGenerics': combine, intersect, setdiff, union The following objects are masked from 'package:stats': filter, lag The following objects are masked from 'package:base': intersect, setdiff, setequal, union > > # Use 2 threads on github actions and CRAN, 4 threads locally > IS_LOCAL <- Sys.getenv("IS_LOCAL") != "" > NTHREADS <- ifelse(IS_LOCAL, 4, 2) > NITER <- ifelse(IS_LOCAL, 4, 1) > NSEQS <- 10000 > MAXSEQLEN <- 200 > CHARSET <- "ACGT" > > random_strings <- function(N, charset = "abcdefghijklmnopqrstuvwxyz") { + charset_stri <- paste0("[", charset, "]") + len <- sample(0:MAXSEQLEN, N, replace=TRUE) + result <- lapply(0:MAXSEQLEN, function(x) { + nx <- sum(len == x) + if(nx == 0) return(character()) + stringi::stri_rand_strings(nx, x, pattern = charset_stri) + }) + sample(unlist(result)) + } > > mutate_strings <- function(x, prob = 0.025, indel_prob = 0.025, charset = "abcdefghijklmnopqrstuvwxyz") { + charset <- unlist(strsplit(charset, "")) + xsplit <- strsplit(x, "") + sapply(xsplit, function(a) { + r <- runif(length(a)) < prob + a[r] <- sample(charset, sum(r), replace=TRUE) + ins <- runif(length(a)) < indel_prob + a[ins] <- paste0(sample(charset, sum(ins), replace=TRUE), sample(charset, sum(ins), replace=TRUE)) + del <- runif(length(a)) < indel_prob + a[del] <- "" + paste0(a, collapse = "") + }) + } > > # Biostrings notes: > # subject (target) must be of length 1 or equal to pattern (query) > # To get a distance matrix, iterate over target and perform a column bind > # special_zero_case -- if both query and target are empty, Biostrings fails with an error > pairwiseAlignmentFix <- function(pattern, subject, ...) { + results <- rep(0, length(subject)) + special_zero_case <- nchar(pattern) == 0 & nchar(subject) == 0 + if(all(special_zero_case)) { + results + } else { + results[!special_zero_case] <- Biostrings::pairwiseAlignment(pattern=pattern[!special_zero_case], subject=subject[!special_zero_case], ...) + results + } + } > > biostrings_matrix_global <- function(query, target, cost_matrix, gap_cost, gap_open_cost = 0) { + substitutionMatrix <- -cost_matrix + lapply(query, function(x) { + query2 <- rep(x, length(target)) + -pairwiseAlignmentFix(pattern=query2, subject=target, substitutionMatrix = substitutionMatrix, gapOpening=gap_open_cost, gapExtension=gap_cost, scoreOnly=TRUE, type="global") + }) %>% do.call(rbind, .) + } > > biostrings_pairwise_global <- function(query, target, cost_matrix, gap_cost, gap_open_cost = 0) { + substitutionMatrix <- -cost_matrix + -pairwiseAlignment(pattern=query, subject=target, substitutionMatrix = substitutionMatrix,gapOpening=gap_open_cost, gapExtension=gap_cost, scoreOnly=TRUE, type="global") + } > > biostrings_matrix_anchored <- function(query, target, query_size, target_size, cost_matrix, gap_cost, gap_open_cost = 0) { + substitutionMatrix <- -cost_matrix + lapply(seq_along(query), function(i) { + query2 <- substring(query[i], 1, query_size[i,,drop=TRUE]) + target2 <- substring(target, 1, target_size[i,,drop=TRUE]) + -pairwiseAlignmentFix(pattern=query2, subject=target2, substitutionMatrix = substitutionMatrix, gapOpening=gap_open_cost, gapExtension=gap_cost, scoreOnly=TRUE, type="global") + }) %>% do.call(rbind, .) + } > > biostrings_pairwise_anchored <- function(query, target, query_size, target_size, cost_matrix, gap_cost, gap_open_cost = 0) { + substitutionMatrix <- -cost_matrix + query2 <- substring(query, 1, query_size) + target2 <- substring(target, 1, target_size) + -pairwiseAlignmentFix(pattern=query2, subject=target2, substitutionMatrix = substitutionMatrix, gapOpening=gap_open_cost, gapExtension=gap_cost, scoreOnly=TRUE, type="global") + } > > for(. in 1:NITER) { + + print("Checking hamming search correctness") + local({ + # Note: seqtrie returns `NA_integer_` for hamming distance when the lengths are different + # whereas stringdist returns `Inf` + # This is why we need to replace `NA_integer_` with `Inf` when comparing results + + target <- c(random_strings(NSEQS, CHARSET),"") %>% unique + query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) + query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique + + # Check matrix results + results_seqtrie <- dist_matrix(query, target, mode = "hamming", nthreads=NTHREADS) + results_seqtrie[is.na(results_seqtrie)] <- Inf + results_stringdist <- stringdist::stringdistmatrix(query, target, method = "hamming", nthread=NTHREADS) + stopifnot(all(results_seqtrie == results_stringdist)) + + # Check pairwise results + query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) + results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "hamming", nthreads=NTHREADS) + results_seqtrie[is.na(results_seqtrie)] <- Inf + results_stringdist <- stringdist::stringdist(query_pairwise, target, method = "hamming", nthread=NTHREADS) + stopifnot(all(results_seqtrie == results_stringdist)) + }) + + print("Checking levenshtein search correctness") + local({ + target <- c(random_strings(NSEQS, CHARSET),"") %>% unique + query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) + query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique + + # Check matrix results + results_seqtrie <- dist_matrix(query, target, mode = "levenshtein", nthreads=NTHREADS) + results_stringdist <- stringdist::stringdistmatrix(query, target, method = "lv", nthread=NTHREADS) + stopifnot(all(results_seqtrie == results_stringdist)) + + # Check pairwise results + query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) + results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "levenshtein", nthreads=NTHREADS) + results_stringdist <- stringdist::stringdist(query_pairwise, target, method = "lv", nthread=NTHREADS) + stopifnot(all(results_seqtrie == results_stringdist)) + }) + + print("Checking anchored search correctness") + local({ + # There is no anchored search in stringdist (or elsewhere). To get the same results, we substring the query and target sequences + # By the results of the seqtrie anchored search and then compare the results + + target <- c(random_strings(NSEQS, CHARSET),"") %>% unique + query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) + query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique + + # Check matrix results + results_seqtrie <- dist_matrix(query, target, mode = "anchored", nthreads=NTHREADS) + query_size <- attr(results_seqtrie, "query_size") + target_size <- attr(results_seqtrie, "target_size") + results_stringdist <- lapply(seq_along(query), function(i) { + query_size2 <- query_size[i,,drop=TRUE] + target_size2 <- target_size[i,,drop=TRUE] + query2 <- substring(query[i], 1, query_size2) # query[i] is recycled + target2 <- substring(target, 1, target_size2) + stringdist::stringdist(query2, target2, method = "lv", nthread=NTHREADS) + }) %>% do.call(rbind, .) + stopifnot(all(results_seqtrie == results_stringdist)) + + # Check pairwise results + query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) + results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "anchored", nthreads=NTHREADS) + query_size <- attr(results_seqtrie, "query_size") + target_size <- attr(results_seqtrie, "target_size") + query2 <- substring(query_pairwise, 1, query_size) + target2 <- substring(target, 1, target_size) + results_stringdist <- stringdist::stringdist(query2, target2, method = "lv", nthread=NTHREADS) + stopifnot(all(results_seqtrie == results_stringdist)) + }) + + print("Checking global search with linear gap for correctness") + local({ + target <- c(random_strings(NSEQS, CHARSET),"") %>% unique + query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) + query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique + + # Check matrix results + cost_matrix <- matrix(sample(1:3, size = nchar(CHARSET)^2, replace=TRUE), nrow=nchar(CHARSET)) + diag(cost_matrix) <- 0 + colnames(cost_matrix) <- rownames(cost_matrix) <- strsplit(CHARSET, "")[[1]] + gap_cost <- sample(1:3, size = 1) + results_seqtrie <- dist_matrix(query, target, mode = "levenshtein", cost_matrix = cost_matrix, gap_cost = gap_cost, nthreads=NTHREADS) + results_biostrings <- biostrings_matrix_global(query, target, cost_matrix = cost_matrix, gap_cost = gap_cost) + stopifnot(all(results_seqtrie == results_biostrings)) + + # Check pairwise results + query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) + results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "levenshtein", cost_matrix = cost_matrix, gap_cost = gap_cost, nthreads=NTHREADS) + results_biostrings <- biostrings_pairwise_global(query_pairwise, target, cost_matrix = cost_matrix, gap_cost = gap_cost) + stopifnot(all(results_seqtrie == results_biostrings)) + }) + + print("Checking anchored search with linear gap for correctness") + local({ + target <- c(random_strings(NSEQS, CHARSET),"") %>% unique + query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) + query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique + + # Check matrix results + cost_matrix <- matrix(sample(1:3, size = nchar(CHARSET)^2, replace=TRUE), nrow=nchar(CHARSET)) + diag(cost_matrix) <- 0 + colnames(cost_matrix) <- rownames(cost_matrix) <- strsplit(CHARSET, "")[[1]] + gap_cost <- sample(1:3, size = 1) + results_seqtrie <- dist_matrix(query, target, mode = "anchored", cost_matrix = cost_matrix, gap_cost = gap_cost, nthreads=NTHREADS) + query_size <- attr(results_seqtrie, "query_size") + target_size <- attr(results_seqtrie, "target_size") + results_biostrings <- biostrings_matrix_anchored(query, target, query_size, target_size, cost_matrix = cost_matrix, gap_cost = gap_cost) + stopifnot(all(results_seqtrie == results_biostrings)) + + # Check pairwise results + query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) + results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "anchored", cost_matrix = cost_matrix, gap_cost = gap_cost, nthreads=NTHREADS) + query_size <- attr(results_seqtrie, "query_size") + target_size <- attr(results_seqtrie, "target_size") + results_biostrings <- biostrings_pairwise_anchored(query_pairwise, target, query_size, target_size, cost_matrix = cost_matrix, gap_cost = gap_cost) + stopifnot(all(results_seqtrie == results_biostrings)) + }) + + + print("Checking global search with affine gap for correctness") + local({ + target <- c(random_strings(NSEQS, CHARSET),"") %>% unique + query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) + query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique + + # Check matrix results + cost_matrix <- matrix(sample(1:3, size = nchar(CHARSET)^2, replace=TRUE), nrow=nchar(CHARSET)) + diag(cost_matrix) <- 0 + colnames(cost_matrix) <- rownames(cost_matrix) <- strsplit(CHARSET, "")[[1]] + gap_cost <- sample(1:3, size = 1) + gap_open_cost <- sample(1:3, size = 1) + results_seqtrie <- dist_matrix(query, target, mode = "levenshtein", cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cos=gap_open_cost, nthreads=NTHREADS) + results_biostrings <- biostrings_matrix_global(query, target, cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost) + stopifnot(all(results_seqtrie == results_biostrings)) + + # Check pairwise results + query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) + results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "levenshtein", cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost, nthreads=NTHREADS) + results_biostrings <- biostrings_pairwise_global(query_pairwise, target, cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost) + stopifnot(all(results_seqtrie == results_biostrings)) + }) + + print("Checking anchored search with affine gap for correctness") + local({ + target <- c(random_strings(NSEQS, CHARSET),"") %>% unique + query <- sample(c(sample(target, NSEQS/1000), random_strings(NSEQS/1000, CHARSET))) + query <- c(mutate_strings(query, indel_prob=0, charset = CHARSET), "") %>% unique + + # Check matrix results + cost_matrix <- matrix(sample(1:3, size = nchar(CHARSET)^2, replace=TRUE), nrow=nchar(CHARSET)) + diag(cost_matrix) <- 0 + colnames(cost_matrix) <- rownames(cost_matrix) <- strsplit(CHARSET, "")[[1]] + gap_cost <- sample(1:3, size = 1) + gap_open_cost <- sample(1:3, size = 1) + results_seqtrie <- dist_matrix(query, target, mode = "anchored", cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost, nthreads=NTHREADS) + query_size <- attr(results_seqtrie, "query_size") + target_size <- attr(results_seqtrie, "target_size") + results_biostrings <- biostrings_matrix_anchored(query, target, query_size, target_size, cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost) + stopifnot(all(results_seqtrie == results_biostrings)) + + # Check pairwise results + query_pairwise <- mutate_strings(target, prob=0.025, indel_prob=0.05, charset = CHARSET) + results_seqtrie <- dist_pairwise(query_pairwise, target, mode = "anchored", cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost, nthreads=NTHREADS) + query_size <- attr(results_seqtrie, "query_size") + target_size <- attr(results_seqtrie, "target_size") + results_biostrings <- biostrings_pairwise_anchored(query_pairwise, target, query_size, target_size, cost_matrix = cost_matrix, gap_cost = gap_cost, gap_open_cost=gap_open_cost) + stopifnot(all(results_seqtrie == results_biostrings)) + }) + } [1] "Checking hamming search correctness" [1] "Checking levenshtein search correctness" [1] "Checking anchored search correctness" [1] "Checking global search with linear gap for correctness" [1] "Checking anchored search with linear gap for correctness" [1] "Checking global search with affine gap for correctness" [1] "Checking anchored search with affine gap for correctness" > > proc.time() user system elapsed 482.28 2.34 277.68