context("Negative values and reduce = FALSE") test_that("Symmetry", { data("darfur") library(sensemakr) darfur2 <- darfur darfur2$directlyharmed <- darfur2$directlyharmed*(-1) model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur) model2 <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur2) sens1 <- sensemakr(model = model, treatment = "directlyharmed", q = 1) sens2 <- sensemakr(model = model2, treatment = "directlyharmed", q = 1) expect_equal(abs(sens1$sensitivity_stats[-1]), abs(sens2$sensitivity_stats[-1])) sens3 <- sensemakr(model = model, treatment = "directlyharmed", q = 1, reduce = F) sens4 <- sensemakr(model = model2, treatment = "directlyharmed", q = 1, reduce = F) expect_equal(abs(sens3$sensitivity_stats[-1]), abs(sens1$sensitivity_stats[-1])) expect_equal(abs(sens4$sensitivity_stats[-1]), abs(sens2$sensitivity_stats[-1])) }) test_that("reduce = FALSE", { data("darfur") library(sensemakr) darfur2 <- darfur darfur2$directlyharmed <- darfur2$directlyharmed*(-1) model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur) sens1 <- sensemakr(model = model, treatment = "directlyharmed", q = 1) sens2 <- sensemakr(model = model, treatment = "directlyharmed", q = 1, reduce = FALSE) expect_true(sens1$sensitivity_stats$t_statistic > 0) expect_true(sens2$sensitivity_stats$t_statistic < 0 ) expect_equal(abs(sens1$sensitivity_stats[-1]), abs(sens2$sensitivity_stats[-1])) sens1 <- sensemakr(model = model, treatment = "directlyharmed", q = 2, benchmark_covariates = "female", kd = 1:3) sens2 <- sensemakr(model = model, treatment = "directlyharmed", q = 2, benchmark_covariates = "female", kd = 1:3, reduce = FALSE) h01 <- attr(sens1$bounds$adjusted_t, "h0") h02 <- attr(sens2$bounds$adjusted_t, "h0") expect_equal(h01, sens1$sensitivity_stats$estimate*(1-2)) expect_equal(h02, sens1$sensitivity_stats$estimate*(1+2)) expect_true(sens2$sensitivity_stats$t_statistic < 0 ) expect_equal(abs(sens1$sensitivity_stats[-1]), abs(sens2$sensitivity_stats[-1])) ts <- with(sens1$bounds, (adjusted_estimate-h01)/adjusted_se) expect_equivalent(ts, sens1$bounds$adjusted_t) })