skip_on_cran() library(semtree) # generate data with two observed variables x,y # and two predictors # N<-1000 x<-rnorm(N) y<-rnorm(N) pred1 <- ordered( sample(c(0,1,2),N,replace=TRUE) ) pred2 <- sample(0:10, N, replace=TRUE) y2 <- ifelse(pred2>5,0.2*y+0.8*x,x) # define a fully saturated model model <- "x~~y; x~~x;y~~y" sim_data <- data.frame(x,y=y2,pred1,pred2) fitted_model <- lavaan::lavaan(model,sim_data) tree <- semtree(fitted_model, sim_data, control = semtree_control(method="score",verbose=TRUE)) plot(tree) forest <- semforest(fitted_model, sim_data) pars_pred <- predict(forest, sim_data, "pars") #pars_pred <- predict(strip(forest), sim_data, "pars")