## ---- test-semmcci-mc-generic-simple-med-defined lapply( X = 1, FUN = function(i, n, R, tol, text) { message(text) seed <- 42 set.seed(seed) cp <- 0.00 b <- 0.10 a <- 0.10 sigma2ey <- 1 - b^2 - cp^2 - 2 * a * b * cp sigma2em <- 1 - a^2 sigma2x <- 1 coefs <- c( cp = cp, b = b, a = a, ab = a * b ) x <- rnorm(n = n, sd = sqrt(sigma2x)) m <- a * x + rnorm(n = n, sd = sqrt(sigma2em)) y <- cp * x + b * m + rnorm(n = n, sd = sqrt(sigma2ey)) data <- data.frame(x, m, y) model <- " y ~ cp * x + b * m m ~ a * x ab := a * b " def <- list( "a * b" ) fit <- lavaan::sem( data = data, model = model, fixed.x = FALSE ) run <- TRUE tryCatch( { results_chol <- MCGeneric( fit, R = R, alpha = c(0.001, 0.01, 0.05), decomposition = "chol", seed = seed, def = def ) }, error = function() { run <- FALSE # nolint } ) results_eigen <- MCGeneric( fit, R = R, alpha = c(0.001, 0.01, 0.05), decomposition = "eigen", seed = seed, def = def ) results_svd <- MCGeneric( fit, R = R, alpha = c(0.001, 0.01, 0.05), decomposition = "svd", seed = seed, def = def ) set.seed(seed) answers <- MASS::mvrnorm( n = R, mu = lavaan::coef(fit), Sigma = lavaan::vcov(fit) ) answers <- cbind( answers, ab = answers[, "a"] * answers[, "b"] ) if (run) { testthat::test_that( paste(text, "chol"), { testthat::expect_equal( results_chol$thetahat$est, lavaan::parameterEstimates(fit)[7, "est"], check.attributes = FALSE ) testthat::expect_true( abs( .MCCI( results_chol )[def[[1]], "97.5%"] - quantile( answers[, "ab"], .975, na.rm = TRUE ) ) <= tol ) } ) } testthat::test_that( paste(text, "eigen"), { testthat::expect_equal( results_eigen$thetahat$est, lavaan::parameterEstimates(fit)[7, "est"], check.attributes = FALSE ) testthat::expect_true( abs( .MCCI( results_eigen )[def[[1]], "97.5%"] - quantile( answers[, "ab"], .975, na.rm = TRUE ) ) <= tol ) } ) testthat::test_that( paste(text, "svd"), { testthat::expect_equal( results_svd$thetahat$est, lavaan::parameterEstimates(fit)[7, "est"], check.attributes = FALSE ) testthat::expect_true( abs( .MCCI( results_svd )[def[[1]], "97.5%"] - quantile( answers[, "ab"], .975, na.rm = TRUE ) ) <= tol ) } ) # coverage MCGeneric( stats::lm( formula = "y ~ x + m", data = data ), R = R, alpha = c(0.001, 0.01, 0.05), decomposition = "eigen", seed = seed, def = list("x * m") ) }, n = 1000L, R = 2000L, tol = 0.01, text = "test-semmcci-mc-generic-simple-med-defined" )