## ---- test-semmcci-mc-func-simple-med lapply( X = 1, FUN = function(i, n, R, tol, text) { message(text) seed <- 42 set.seed(seed) cp <- 0.00 b <- 0.10 a <- 0.10 sigma2ey <- 1 - b^2 - cp^2 - 2 * a * b * cp sigma2em <- 1 - a^2 sigma2x <- 1 coefs <- c( cp = cp, b = b, a = a, ab = a * b ) x <- rnorm(n = n, sd = sqrt(sigma2x)) m <- a * x + rnorm(n = n, sd = sqrt(sigma2em)) y <- cp * x + b * m + rnorm(n = n, sd = sqrt(sigma2ey)) data <- data.frame(x, m, y) model <- " y ~ cp * x + b * m m ~ a * x ab := a * b " fit <- lavaan::sem( data = data, model = model, fixed.x = FALSE ) func <- function(x) { ab <- x[2] * x[3] names(ab) <- "ab" return( ab ) } ## MCFunc run <- TRUE tryCatch( { results_chol <- MCFunc( coef = lavaan::coef(fit), vcov = lavaan::vcov(fit), func = func, R = R, alpha = c(0.001, 0.01, 0.05), decomposition = "chol", seed = seed ) }, error = function() { run <- FALSE # nolint } ) results_eigen <- MCFunc( coef = lavaan::coef(fit), vcov = lavaan::vcov(fit), func = func, R = R, alpha = c(0.001, 0.01, 0.05), decomposition = "eigen", seed = seed ) results_svd <- MCFunc( coef = lavaan::coef(fit), vcov = lavaan::vcov(fit), func = func, R = R, alpha = c(0.001, 0.01, 0.05), decomposition = "svd", seed = seed ) set.seed(seed) coefs <- MASS::mvrnorm( n = R, mu = lavaan::coef(fit), Sigma = lavaan::vcov(fit) ) answers <- cbind( coefs, ab = coefs[, "a"] * coefs[, "b"] ) ## Func coef <- as.data.frame( t(coefs) ) results_func <- Func( coef = coef, func = func, est = lavaan::coef(fit), alpha = c(0.001, 0.01, 0.05) ) if (run) { testthat::test_that( paste(text, "chol"), { testthat::expect_equal( results_chol$thetahat$est, lavaan::parameterEstimates(fit)[7, "est"], check.attributes = FALSE ) testthat::expect_true( abs( .MCCI( results_chol )["ab", "97.5%"] - quantile( answers[, "ab"], .975, na.rm = TRUE ) ) <= tol ) } ) } testthat::test_that( paste(text, "eigen"), { testthat::expect_equal( results_eigen$thetahat$est, lavaan::parameterEstimates(fit)[7, "est"], check.attributes = FALSE ) testthat::expect_true( abs( .MCCI( results_eigen )["ab", "97.5%"] - quantile( answers[, "ab"], .975, na.rm = TRUE ) ) <= tol ) } ) testthat::test_that( paste(text, "svd"), { testthat::expect_equal( results_svd$thetahat$est, lavaan::parameterEstimates(fit)[7, "est"], check.attributes = FALSE ) testthat::expect_true( abs( .MCCI( results_svd )["ab", "97.5%"] - quantile( answers[, "ab"], .975, na.rm = TRUE ) ) <= tol ) } ) testthat::test_that( paste(text, "func"), { testthat::expect_equal( results_func$thetahat$est, lavaan::parameterEstimates(fit)[7, "est"], check.attributes = FALSE ) testthat::expect_true( abs( .MCCI( results_func )["ab", "97.5%"] - quantile( answers[, "ab"], .975, na.rm = TRUE ) ) <= tol ) } ) }, n = 1000L, R = 2000L, tol = 0.01, text = "test-semmcci-mc-func-simple-med" )