context("SEMinR accepts fully specified model objects\n") # PLS Test cases -- derived from test-pls.R ## Primary usage: fully specified model # measurement model: mobi_mm <- constructs( composite("Image", multi_items("IMAG", 1:5),weights = mode_A), composite("Expectation", multi_items("CUEX", 1:3),weights = mode_A), composite("Value", multi_items("PERV", 1:2),weights = mode_A), composite("Satisfaction", multi_items("CUSA", 1:3),weights = mode_A), interaction_term(iv = "Image", moderator = "Expectation", method = orthogonal, weights = mode_A), interaction_term(iv = "Image", moderator = "Value", method = orthogonal, weights = mode_A) ) # structural model: mobi_sm <- relationships( paths(to = "Satisfaction", from = c("Image", "Expectation", "Value", "Image*Expectation", "Image*Value")) ) # Load data, assemble model, and estimate using semPLS mobi <- mobi model = specify_model(measurement_model=mobi_mm, structural_model=mobi_sm) seminr_model <- estimate_pls(mobi, model = model, inner_weights = path_factorial) # Load outputs coefficients <- seminr_model$path_coef construct_scores <- seminr_model$construct_scores weight <- seminr_model$outer_weights # Load controls coefficients_control <- as.matrix(read.csv(file = paste(test_folder,"coefficients.csv", sep = ""), row.names = 1, check.names = FALSE)) construct_scores_control <- as.matrix(read.csv(file = paste(test_folder,"constructscores.csv", sep = ""), row.names = 1, check.names = FALSE)) weight_control <- as.matrix(read.csv(file = paste(test_folder,"weights.csv", sep = ""), row.names = 1, check.names = FALSE)) # Testing test_that("Seminr estimates the loadings and path coefficients correctly", { expect_equal(coefficients[,6], coefficients_control[,6], tolerance = 0.00001) }) test_that("Seminr estimates the construct scores correctly", { expect_equal(construct_scores[,1:6], construct_scores_control[,1:6], tolerance = 0.00001) }) test_that("Seminr estimates the outer weights correctly", { expect_equal(weight, weight_control, tolerance = 0.00001) }) ## Alternative Usage: overriding structural model mobi_sm2 <- relationships( paths(to = "Satisfaction", from = c("Image", "Expectation", "Value")) ) seminr_model2 <- estimate_pls(mobi, model = model, structural_model = mobi_sm2, inner_weights = path_factorial) coefficients2 <- seminr_model2$path_coef test_that("Seminr estimates different number of parameters with overriding structural specification", { expect_false(ncol(coefficients2) == ncol(coefficients_control)) }) ## Alternative Usage: overriding measurement model mobi_mm2 <- constructs( composite("Image", multi_items("PERV", 1:2),weights = mode_A), composite("Expectation", multi_items("CUSA", 1:2),weights = mode_A), composite("Value", multi_items("IMAG", 1:2),weights = mode_A), composite("Satisfaction", multi_items("CUEX", 1:2),weights = mode_A), interaction_term(iv = "Image", moderator = "Expectation", method = two_stage, weights = mode_A), interaction_term(iv = "Image", moderator = "Value", method = two_stage, weights = mode_A) ) seminr_model3 <- estimate_pls(mobi, model = model, measurement_model = mobi_mm2, inner_weights = path_factorial) coefficients3 <- seminr_model3$path_coef test_that("Seminr estimates different results with overriding measurement specification", { expect_false(isTRUE(all.equal(coefficients3, coefficients_control, tolerance=0.01))) })