context("SEMinR correctly estimates CBSEM interaction models\n") write_controls <- function(cbsem_model, cbsem_summary, approach) { filename <- function(values, approach) { paste("tests/fixtures/cbsem-interaction-", approach, "-", values, ".csv", sep="") } write.csv(cbsem_summary$paths$coefficients, file = filename("paths-coefficients", approach)) write.csv(cbsem_summary$quality$reliability, file = filename("quality-reliability", approach)) write.csv(cbsem_model$construct_scores, file = filename("factor_scores", approach), row.names = FALSE) print("Please move files into correct fixture folders by hand") } load_controls <- function(test_folder, approach) { list( betas = as.matrix(read.csv(file = paste(test_folder, "cbsem-interaction-", approach, "-paths-coefficients.csv", sep = ""), row.names = 1)), reliability = as.matrix(read.csv(file = paste(test_folder, "cbsem-interaction-", approach, "-quality-reliability.csv", sep = ""), row.names = 1)), scores = as.matrix(read.csv(file = paste(test_folder, "cbsem-interaction-", approach, "-factor_scores.csv", sep = ""))) ) } # Test cases ## Simple case # Creating our measurement model mobi_partial_mm <- constructs( reflective("Image", multi_items("IMAG", 1:5)), reflective("Expectation", single_item("CUEX3")), reflective("Value", multi_items("PERV", 1:2)), reflective("Satisfaction", multi_items("CUSA", 1:3)) ) # Structural model # note: interactions should be the names of its main constructs joined by a '*' in between. mobi_sm <- relationships( paths(to = "Satisfaction", from = c("Image", "Expectation", "Value", "Image*Expectation") ) ) # PRODUCT INDICATOR APPROACH intxn_pi <- interaction_term(iv = "Image", moderator = "Expectation", method = product_indicator) mobi_mm <- append(mobi_partial_mm, c(scaled_interaction=intxn_pi)) mobi_cbsem <- estimate_cbsem(data = mobi, measurement_model = mobi_mm, structural_model = mobi_sm) cbsem_summary <- summary(mobi_cbsem) # write_controls(mobi_cbsem, cbsem_summary, "pi") controls <- load_controls(test_folder, "pi") test_that("Seminr estimates PI interaction paths correctly\n", { expect_equal(cbsem_summary$paths$coefficients, controls$betas, tolerance = 0.00001) }) test_that("Seminr estimates PI interaction AVE, rhoC (reliability) correctly\n", { expect_equal(cbsem_summary$quality$reliability, controls$reliability, tolerance = 0.00001) }) test_that("Seminr estimates PI ten Berge factor scores correctly\n", { expect_equal(mobi_cbsem$construct_scores, controls$scores, tolerance = 0.00001) }) # TWO-STAGE INDICATOR APPROACH intxn_pi <- interaction_term(iv = "Image", moderator = "Expectation", method = two_stage) mobi_mm <- append(mobi_partial_mm, c(scaled_interaction=intxn_pi)) mobi_cbsem <- estimate_cbsem(data = mobi, measurement_model = mobi_mm, structural_model = mobi_sm) cbsem_summary <- summary(mobi_cbsem) # write_controls(mobi_cbsem,cbsem_summary, "2stage") controls <- load_controls(test_folder, "2stage") test_that("Seminr estimates TWO-STAGE interaction paths correctly\n", { expect_equal(cbsem_summary$paths$coefficients, controls$betas, tolerance = 0.00001) }) test_that("Seminr estimates TWO-STAGE interaction AVE, rhoC (reliability) correctly\n", { expect_equal(cbsem_summary$quality$reliability, controls$reliability, tolerance = 0.00001) }) test_that("Seminr estimates TWO-STAGE ten Berge factor scores correctly\n", { expect_equal(mobi_cbsem$construct_scores, controls$scores, tolerance = 0.00001) })