skip_on_cran() # Slow tests library(testthat) library(lavaan) mod <- ' f1 =~ x1 + x2 + x3 f2 =~ x4 + x5 + x6 ' set.seed(154151) dat <- HolzingerSwineford1939[sample.int(301, 60), ] fit <- suppressWarnings(lavaan::cfa(mod, dat)) fit_rerun <- lavaan_rerun(fit, to_rerun = 1:20, allow_inadmissible = TRUE, parallel = FALSE) fit_rerun out <- influence_stat(fit_rerun) p <- gcd_plot(out) test_that("NA in rerun", { expect_equal(nrow(p$data), 19) # expect_no_warning(print(p)) }) p <- md_plot(out) test_that("NA in rerun", { expect_equal(nrow(p$data), 20) # expect_no_warning(print(p)) }) p <- gcd_gof_plot(out, "chisq") test_that("NA in rerun", { expect_equal(nrow(p$data), 19) # expect_no_warning(print(p)) }) p <- gcd_gof_md_plot(out, "chisq", circle_size = 35) test_that("NA in rerun", { expect_equal(nrow(p$data), 19) # expect_no_warning(print(p)) }) out <- est_change(fit_rerun) p <- est_change_plot(out) test_that("NA in rerun", { expect_equal(nrow(p$data), 247) # expect_no_warning(print(p)) }) p <- est_change_gcd_plot(out) test_that("NA in rerun", { expect_equal(nrow(p$data), 247) # expect_no_warning(print(p)) }) p <- index_plot(out, "f1=~x3") test_that("NA in rerun", { expect_equal(nrow(p$data), 19) # expect_no_warning(print(p)) })