library(seasonal) checkX13() # import test cases cc <- read.csv(file.path(nocran_tests, "examples/ex_run.csv")) rr <- as.character(cc$r) # r <- rr[-c(87, 98)] # remove known issues r <- rr[-c(87, 91, 96, 97, 98, 99, 100, 101, 102, 103)] # --- known issues ------------------------------------------------------------- # # 87 # seas(AirPassengers, transform.function = "none", transform.power = 0.3333) # # 98 # data(holiday) # easter1 <- genhol(easter, start = -10, end = -1, frequency = 12) # easter2 <- genhol(easter, start = 0, end = 5, frequency = 12) # seas(AirPassengers, # x11 = "", # regression.aictest = NULL, # xreg = cbind(easter1, easter2), # x11regression.aictest = "td", # x11regression.usertype = "holiday", # outlier = NULL # ) # --- new known issues --------------------------------------------------------- # https://github.com/christophsax/seasonal/issues/272 # seas( # AirPassengers, # regression.aictest = NULL, # x11.seasonalma = "s3x9", # x11.trendma = 23, # x11regression.variables = "td", # x11regression.aictest = "td" # ) # seas( # AirPassengers, # x11 = "", # regression.aictest = NULL, # x11regression.variables = "td" # ) # seas( # AirPassengers, # x11 = "", # regression.aictest = NULL, # x11regression.variables = "td", # x11regression.aictest = c("td", "easter") # ) # seas(AirPassengers, # x11 = "", # regression.aictest = NULL, # x11regression.variables = "td", # x11regression.tdprior = c(1.4, 1.4, 1.4, 1.4, 1.4, 0.0, 0.0), # transform.function = "log" # ) # seas(AirPassengers, # x11 = "", # regression.aictest = NULL, # x11regression.variables = c("td", "easter[8]"), # x11regression.critical = 5, # x11regression.b = c("0.4453f", "0.8550f", "-0.3012f", "0.2717f", # "-0.1705f", "0.0983f", "-0.0082") # ) # seas(AirPassengers, # x11 = "", # regression.aictest = NULL, # x11regression.variables = c("td/1950.1/", "easter[8]", # "labor[10]", "thank[10]"), # x11.seasonalma = "x11default", # x11.sigmalim = c(1.8, 2.9), # x11.appendfcst = "yes" # ) # seas(AirPassengers, # x11 = "", # transform.function = "log", # regression.variables = "const", # regression.aictest = NULL, # arima.model = "(0 1 1)(0 1 1)", # outlier = NULL, # x11regression.variables = c("td", "easter[8]") # )