test_that("tidy() works with basic spatiotemporal model", { skip_on_cran() fit <- sdmTMB( density ~ depth_scaled, data = pcod_2011, mesh = pcod_mesh_2011, family = tweedie(link = "log"), time = "year", ) x <- tidy(fit, "ran_pars", conf.int = TRUE) expect_true(sum(is.na(x$std.error)) == 0L) x <- tidy(fit, conf.int = TRUE) expect_true(sum(is.na(x$std.error)) == 0L) }) test_that("tidy() works with spatial varying coefficients", { skip_on_cran() d <- pcod_2011 d$year_scaled <- as.numeric(scale(d$year)) fit <- sdmTMB( density ~ year_scaled, data = d, mesh = pcod_mesh_2011, family = tweedie(link = "log"), time = "year", spatiotemporal = "off", spatial_varying = ~ 0 + year_scaled ) x <- tidy(fit, "ran_pars", conf.int = TRUE) expect_true(sum(is.na(x$std.error)) == 0L) }) test_that("tidy() works with delta models", { skip_on_cran() fit <- sdmTMB( density ~ depth_scaled, data = pcod_2011, mesh = pcod_mesh_2011, family = delta_gamma() ) x <- tidy(fit, "ran_pars", conf.int = TRUE) expect_true(sum(is.na(x$std.error)) == 0L) x <- tidy(fit, "ran_pars", conf.int = TRUE, model = 2) expect_true(sum(is.na(x$std.error)) == 0L) }) test_that("tidy() works with separate range parameters", { skip_on_cran() skip_on_ci() fit <- sdmTMB( density ~ depth_scaled, data = pcod_2011, mesh = pcod_mesh_2011, share_range = FALSE, family = tweedie(link = "log"), time = "year", ) x <- tidy(fit, "ran_pars", conf.int = TRUE) expect_true(sum(is.na(x$std.error)) == 0L) }) test_that("tidy() works with time-varying coefficients", { skip_on_cran() skip_on_ci() mesh <- make_mesh(pcod_2011, c("X", "Y"), cutoff = 20) fit <- sdmTMB( density ~ 0 + as.factor(year), time_varying = ~ 0 + depth_scaled + depth_scaled2, data = pcod_2011, time = "year", mesh = mesh, family = tweedie() ) pars <- tidy(fit, "ran_vals") expect_equal(pars$estimate, c( -0.87, -0.81, -0.75, -1.11, -1.92, -0.92, -1.59, -2.20 ), tolerance = 0.01) expect_equal(pars$term, c( "depth_scaled:2011", "depth_scaled:2013", "depth_scaled:2015", "depth_scaled:2017", "depth_scaled2:2011", "depth_scaled2:2013", "depth_scaled2:2015", "depth_scaled2:2017" )) }) test_that("tidy() works with smooth terms", { skip_on_cran() skip_on_ci() fit <- sdmTMB( density ~ s(depth), data = pcod_2011, mesh = pcod_mesh_2011, family = tweedie(link = "log") ) x <- tidy(fit) expect_equal(x$term, c("(Intercept)", "sdepth")) }) test_that("tidy() works with sdmTMB_cv objects", { skip_on_cran() skip_on_ci() mesh <- make_mesh(pcod, c("X", "Y"), cutoff = 25) m_cv <- sdmTMB_cv( density ~ 0 + depth_scaled + depth_scaled2, data = pcod, mesh = mesh, family = tweedie(link = "log"), k_folds = 2 ) model1 <- tidy(m_cv$models[[1]]) allmodels <- tidy(m_cv) expect_equal(allmodels[1:2,1:5], model1[,1:5]) expect_true("cv_split" %in% names(allmodels)) expect_equal(allmodels$cv_split, sort(rep(1:2,2))) }) test_that("tidy() correctly handles random effects standard deviations", { skip_on_cran() skip_on_ci() .pcod <- pcod .pcod$binned_lon <- round((pcod$lon - min(pcod$lon)) * 5) fit <- sdmTMB(data = .pcod, formula = density ~ (depth_scaled+1 + binned_lon|year) + (1 | binned_lon), family = tweedie(link = "log"), spatial = "off") t1 <- tidy(fit, "ran_pars") # Test parameter structure expect_identical(t1$term, c("phi", "tweedie_p", "sd__(Intercept)","sd__depth_scaled","sd__binned_lon","sd__(Intercept)")) expect_identical(t1$group_name[3:6], c("year", "year", "year", "binned_lon")) # Test that all SD estimates are positive sd_rows <- grepl("^sd__", t1$term) expect_true(all(t1$estimate[sd_rows] > 0), "All SD estimates should be positive") expect_true(all(t1$conf.low[sd_rows] > 0), "All SD confidence intervals should be positive") expect_true(all(t1$conf.high[sd_rows] > 0), "All SD confidence intervals should be positive") # Test that confidence intervals are properly ordered expect_true(all(t1$conf.low[sd_rows] < t1$estimate[sd_rows]), "CI lower bounds should be less than estimates") expect_true(all(t1$estimate[sd_rows] < t1$conf.high[sd_rows]), "Estimates should be less than CI upper bounds") # Test specific estimate values and CIs (regression tests) expect_equal(t1$estimate[t1$term == "sd__(Intercept)" & t1$group_name == "year"], 0.925, tolerance = 1e-3) expect_equal(t1$conf.low[t1$term == "sd__(Intercept)" & t1$group_name == "year"], 0.374, tolerance = 1e-2) expect_equal(t1$conf.high[t1$term == "sd__(Intercept)" & t1$group_name == "year"], 2.29, tolerance = 1e-2) expect_equal(t1$estimate[t1$term == "sd__depth_scaled"], 0.565, tolerance = 1e-3) expect_equal(t1$conf.low[t1$term == "sd__depth_scaled"], 0.333, tolerance = 1e-2) expect_equal(t1$conf.high[t1$term == "sd__depth_scaled"], 0.959, tolerance = 1e-2) }) test_that("tidy() correctly handles smoother standard deviations", { skip_on_cran() skip_on_ci() .pcod <- pcod .pcod$fyear <- as.factor(pcod$year) fit <- sdmTMB(data = .pcod, formula = density ~ s(depth_scaled, by = fyear), family = tweedie(link = "log"), spatial = "off") t2 <- tidy(fit, "ran_par") # Test parameter structure expect_identical(t2$term, c("phi", "tweedie_p", "sd__s(depth_scaled):fyear2003", "sd__s(depth_scaled):fyear2004", "sd__s(depth_scaled):fyear2005", "sd__s(depth_scaled):fyear2007", "sd__s(depth_scaled):fyear2009", "sd__s(depth_scaled):fyear2011", "sd__s(depth_scaled):fyear2013", "sd__s(depth_scaled):fyear2015", "sd__s(depth_scaled):fyear2017")) # Test that all smooth SD estimates are positive smooth_sd_rows <- grepl("^sd__s\\(", t2$term) expect_true(all(t2$estimate[smooth_sd_rows] > 0), "All smooth SD estimates should be positive") expect_true(all(t2$conf.low[smooth_sd_rows] > 0), "All smooth SD confidence intervals should be positive") expect_true(all(t2$conf.high[smooth_sd_rows] > 0), "All smooth SD confidence intervals should be positive") # Test that confidence intervals are properly ordered for smooth SDs expect_true(all(t2$conf.low[smooth_sd_rows] < t2$estimate[smooth_sd_rows]), "CI lower bounds should be less than estimates") expect_true(all(t2$estimate[smooth_sd_rows] < t2$conf.high[smooth_sd_rows]), "Estimates should be less than CI upper bounds") # Test that std.error is NA for smooth SDs (since they're transformed from log-space) expect_true(all(is.na(t2$std.error[smooth_sd_rows])), "Smooth SD std.error should be NA") # Test specific smooth SD estimate values and CIs (regression tests) expect_equal(t2$estimate[t2$term == "sd__s(depth_scaled):fyear2003"], 10.01841, tolerance = 1e-3) expect_equal(t2$conf.low[t2$term == "sd__s(depth_scaled):fyear2003"], 3.414768, tolerance = 1e-2) expect_equal(t2$conf.high[t2$term == "sd__s(depth_scaled):fyear2003"], 29.39249, tolerance = 1e-2) expect_equal(t2$estimate[t2$term == "sd__s(depth_scaled):fyear2011"], 13.56432, tolerance = 1e-3) expect_equal(t2$conf.low[t2$term == "sd__s(depth_scaled):fyear2011"], 6.740783, tolerance = 1e-2) expect_equal(t2$conf.high[t2$term == "sd__s(depth_scaled):fyear2011"], 27.29518, tolerance = 1e-2) }) test_that("tidy() works with delta model with random intercepts and AR1 time series", { skip_on_cran() d <- pcod d$fake <- rep(c("a", "b", "c"), 9999)[1:nrow(d)] fit <- sdmTMB( density ~ breakpt(depth_scaled) + (1|fake), data = d, time = "year", extra_time = c(2006, 2008, 2010, 2012, 2014, 2016), time_varying = ~1, time_varying_type = "ar1", spatial = "off", spatiotemporal = "off", family = delta_gamma(type = "poisson-link") ) b <- tidy(fit, effects = "ran_pars") b <- tidy(fit, effects = "ran_vals") expect_identical(b$term, c("(Intercept)", "(Intercept)", "(Intercept)", "(Intercept)", "(Intercept)", "(Intercept)", "(Intercept):2003", "(Intercept):2004", "(Intercept):2005", "(Intercept):2006", "(Intercept):2007", "(Intercept):2008", "(Intercept):2009", "(Intercept):2010", "(Intercept):2011", "(Intercept):2012", "(Intercept):2013", "(Intercept):2014", "(Intercept):2015", "(Intercept):2016", "(Intercept):2017", "(Intercept):2003", "(Intercept):2004", "(Intercept):2005", "(Intercept):2006", "(Intercept):2007", "(Intercept):2008", "(Intercept):2009", "(Intercept):2010", "(Intercept):2011", "(Intercept):2012", "(Intercept):2013", "(Intercept):2014", "(Intercept):2015", "(Intercept):2016", "(Intercept):2017" )) })