test_that("Families return a name to list with the correct names", { .names <- c("family", "link", "linkfun", "linkinv") expect_true(all(.names %in% names(student(link = "identity")))) expect_true(all(.names %in% names(lognormal(link = "log")))) expect_true(all(.names %in% names(tweedie(link = "log")))) expect_true(all(.names %in% names(nbinom2(link = "log")))) }) test_that("The supplementary families work with appropriate links", { expect_identical(class(tweedie(link = "log")), "family") expect_identical(class(tweedie(link = log)), "family") expect_error(class(tweedie(link = "banana"))) expect_error(class(tweedie(link = banana))) expect_identical(class(lognormal(link = "log")), "family") expect_identical(class(lognormal(link = log)), "family") expect_error(class(lognormal(link = "banana"))) expect_error(class(lognormal(link = banana))) expect_identical(class(nbinom2(link = "log")), "family") expect_identical(class(nbinom2(link = log)), "family") expect_error(class(nbinom2(link = "banana"))) expect_error(class(nbinom2(link = inverse))) expect_identical(class(student(link = "identity")), "family") expect_identical(class(student(link = identity)), "family") expect_error(class(student(link = "banana"))) expect_error(class(student(link = banana))) }) set.seed(1) x <- stats::runif(100, -1, 1) y <- stats::runif(100, -1, 1) loc <- data.frame(x = x, y = y) spde <- make_mesh(loc, c("x", "y"), n_knots = 50, type = "kmeans") test_that("Student family fits", { skip_on_cran() set.seed(3) initial_betas <- 0.5 range <- 0.5 sigma_O <- 0.3 phi <- 0.01 s <- sdmTMB_simulate(~ 1, data = loc, B = initial_betas, phi = phi, range = range, sigma_O = sigma_O, sigma_E = 0, seed = 1, mesh = spde ) m <- sdmTMB(data = s, formula = observed ~ 1, mesh = spde, family = student(link = "identity", df = 7), spatial = "off", spatiotemporal = "off" ) expect_true(all(!is.na(summary(m$sd_report)[,"Std. Error"]))) expect_length(residuals(m), nrow(s)) }) test_that("Lognormal fits", { skip_on_cran() range <- 1 x <- stats::runif(500, -1, 1) y <- stats::runif(500, -1, 1) loc <- data.frame(x = x, y = y) spde <- make_mesh(loc, c("x", "y"), n_knots = 70, type = "kmeans") sigma_O <- 0.3 sigma_E <- 0 phi <- 0.2 s <- sdmTMB_simulate(~ 1, loc, mesh = spde, family = lognormal(), B = 1, phi = phi, range = range, sigma_O = sigma_O, seed = 1 ) mlog <- sdmTMB(data = s, formula = observed ~ 1, mesh = spde, family = lognormal(link = "log")) expect_equal(exp(mlog$model$par[["ln_phi"]]), phi, tolerance = 0.1) }) test_that("NB2 fits", { skip_on_cran() set.seed(1) x <- stats::runif(300, -1, 1) y <- stats::runif(300, -1, 1) loc <- data.frame(x = x, y = y) spde <- make_mesh(loc, c("x", "y"), n_knots = 80, type = "kmeans") s <- sdmTMB_simulate(~ 1, loc, B = 0.4, phi = 1.5, range = 0.8, sigma_O = 0.4, seed = 1, mesh = spde, family = nbinom2()) m <- sdmTMB(data = s, formula = observed ~ 1, mesh = spde, family = nbinom2(), control = sdmTMBcontrol(newton_loops = 1)) expect_equal(round(tidy(m)[,"estimate", drop=TRUE], 6), 0.601897) }) test_that("Truncated NB2, truncated NB1, and regular NB1 fit", { skip_on_cran() set.seed(1) x <- stats::runif(300, -1, 1) y <- stats::runif(300, -1, 1) loc <- data.frame(x = x, y = y) spde <- make_mesh(loc, c("x", "y"), n_knots = 80, type = "kmeans") s <- sdmTMB_simulate(~ 1, loc, B = 0.4, phi = 1.5, range = 0.8, sigma_O = 0.4, seed = 1, mesh = spde, family = nbinom2()) m_sdmTMB <- sdmTMB(data = s, formula = observed ~ 1, mesh = spde, family = nbinom1(), spatial = "off") m_glmmTMB <- glmmTMB::glmmTMB(data = s, formula = observed ~ 1, family = glmmTMB::nbinom1()) expect_equal(m_glmmTMB$fit$par[[1]], m_sdmTMB$model$par[[1]], tolerance = 0.00001) expect_equal(m_glmmTMB$fit$par[[2]], m_sdmTMB$model$par[[2]], tolerance = 0.00001) s_trunc <- subset(s, observed > 0) spde <- make_mesh(s_trunc, c("x", "y"), n_knots = 80, type = "kmeans") m_sdmTMB <- sdmTMB(data = s_trunc, formula = observed ~ 1, mesh = spde, family = truncated_nbinom2(), spatial = "off") m_glmmTMB <- glmmTMB::glmmTMB(data = s_trunc, formula = observed ~ 1, family = glmmTMB::truncated_nbinom2()) expect_equal(m_glmmTMB$fit$par[[1]], m_sdmTMB$model$par[[1]], tolerance = 0.00001) expect_equal(m_glmmTMB$fit$par[[2]], m_sdmTMB$model$par[[2]], tolerance = 0.00001) m_sdmTMB <- sdmTMB(data = s_trunc, formula = observed ~ 1, mesh = spde, family = truncated_nbinom1(), spatial = "off") m_glmmTMB <- glmmTMB::glmmTMB(data = s_trunc, formula = observed ~ 1, family = glmmTMB::truncated_nbinom1()) expect_equal(m_glmmTMB$fit$par[[1]], m_sdmTMB$model$par[[1]], tolerance = 0.00001) expect_equal(m_glmmTMB$fit$par[[2]], m_sdmTMB$model$par[[2]], tolerance = 0.00001) }) test_that("Poisson fits", { skip_on_cran() d <- pcod spde <- make_mesh(pcod, c("X", "Y"), cutoff = 10) set.seed(3) d$density <- rpois(nrow(pcod), 3) m <- sdmTMB(data = d, formula = density ~ 1, mesh = spde, family = poisson(link = "log"), control = sdmTMBcontrol(newton_loops = 1) ) expect_true(all(!is.na(summary(m$sd_report)[,"Std. Error"]))) expect_length(residuals(m), nrow(pcod)) }) test_that("Binomial fits", { skip_on_cran() d <- pcod[pcod$year == 2017, ] d$density <- round(d$density) spde <- make_mesh(d, c("X", "Y"), cutoff = 10) d$present <- ifelse(d$density > 0, 1, 0) m <- sdmTMB(data = d, formula = present ~ 1, mesh = spde, family = binomial(link = "logit"), control = sdmTMBcontrol(newton_loops = 1)) expect_true(all(!is.na(summary(m$sd_report)[,"Std. Error"]))) expect_length(residuals(m), nrow(d)) }) test_that("Gamma fits", { skip_on_cran() d <- pcod[pcod$year == 2017 & pcod$density > 0, ] spde <- make_mesh(d, c("X", "Y"), cutoff = 10) m <- sdmTMB(data = d, formula = density ~ 1, mesh = spde, family = Gamma(link = "log"), spatial = "off", control = sdmTMBcontrol(newton_loops = 1)) expect_true(all(!is.na(summary(m$sd_report)[,"Std. Error"]))) expect_length(residuals(m), nrow(d)) set.seed(123) d$test_gamma <- stats::rgamma(nrow(d), shape = 0.5, scale = 1 / 0.5) m <- sdmTMB(data = d, formula = test_gamma ~ 1, mesh = spde, family = Gamma(link = "inverse"), spatiotemporal = "off", control = sdmTMBcontrol(newton_loops = 1)) }) test_that("Beta fits", { skip_on_cran() set.seed(1) x <- stats::runif(400, -1, 1) y <- stats::runif(400, -1, 1) loc <- data.frame(x = x, y = y) spde <- make_mesh(loc, c("x", "y"), n_knots = 90, type = "kmeans") s <- sdmTMB_simulate(~ 1, loc, mesh = spde, sigma_O = 0.2, range = 0.8, family = Beta(), phi = 4, B = 1) m <- sdmTMB(data = s, formula = observed ~ 1, mesh = spde, family = Beta(link = "logit"), control = sdmTMBcontrol(newton_loops = 1), spatial = "off") expect_true(all(!is.na(summary(m$sd_report)[,"Std. Error"]))) expect_length(residuals(m), nrow(s)) m_glmmTMB<- glmmTMB::glmmTMB(data = s, formula = observed ~ 1, family = glmmTMB::beta_family(link = "logit")) expect_equal(m$model$par[[2]], m_glmmTMB$fit$par[[2]], tolerance = 1e-4) expect_equal(m$model$par[[1]], m_glmmTMB$fit$par[[1]], tolerance = 1e-4) }) test_that("Censored Poisson fits", { skip_on_cran() set.seed(1) predictor_dat <- data.frame(X = runif(300), Y = runif(300)) mesh <- make_mesh(predictor_dat, xy_cols = c("X", "Y"), cutoff = 0.2) sim_dat <- sdmTMB_simulate( formula = ~1, data = predictor_dat, mesh = mesh, family = poisson(), range = 0.5, sigma_O = 0.2, seed = 1, B = 2 # B0 = intercept ) m_pois <- sdmTMB( data = sim_dat, formula = observed ~ 1, mesh = mesh, family = poisson(link = "log") ) m_nocens_pois <- sdmTMB( data = sim_dat, formula = observed ~ 1, mesh = mesh, family = censored_poisson(link = "log"), control = sdmTMBcontrol(censored_upper = sim_dat$observed) ) expect_equal(m_nocens_pois$tmb_data$y_i[,1], m_nocens_pois$tmb_data$upr) expect_equal(names(m_nocens_pois$tmb_data$family), "censored_poisson") expect_equal(m_pois$model, m_nocens_pois$model) # # left-censored version # L_1 <- 5 # zeros and ones cannot be observed directly - observed as <= L1 # y <- sim_dat$observed # lwr <- ifelse(y <= L_1, 0, y) # upr <- ifelse(y <= L_1, L_1, y) # m_left_cens_pois <- sdmTMB( # data = sim_dat, formula = observed ~ 1, # mesh = mesh, family = censored_poisson(link = "log"), # control = sdmTMBcontrol(censored_lower = lwr, censored_upper = upr), # spatial = "off" # ) # right-censored version U_1 <- 8 # U_1 and above cannot be directly observed - instead we see >= U1 y <- sim_dat$observed lwr <- ifelse(y >= U_1, U_1, y) upr <- ifelse(y >= U_1, NA, y) # old: expect_error(m_right_cens_pois <- sdmTMB( data = sim_dat, formula = observed ~ 1, family = censored_poisson(link = "log"), experimental = list(lwr = lwr, upr = upr), spatial = "off" ), regexp = "upr") # new: m_right_cens_pois <- sdmTMB( data = sim_dat, formula = observed ~ 1, family = censored_poisson(link = "log"), control = sdmTMBcontrol(censored_upper = upr), spatial = "off" ) # interval-censored tough example # unique bounds per observation with upper limit 500 to test numerical underflow issues set.seed(123) U_2 <- sample(c(5:9), size = length(y), replace = TRUE) L_2 <- sample(c(1, 2, 3, 4), size = length(y), replace = TRUE) # lwr <- ifelse(y >= U_2, U_2, ifelse(y <= L_2, 0, y)) upr <- ifelse(y >= U_2, 500, ifelse(y <= L_2, L_2, y)) m_interval_cens_pois <- sdmTMB( data = sim_dat, formula = observed ~ 1, family = censored_poisson(link = "log"), control = sdmTMBcontrol(censored_upper = upr), spatial = "off" ) expect_true(all(!is.na(summary(m_interval_cens_pois$sd_report)[, "Std. Error"]))) # # reversed upr and lwr: # expect_error( # m <- sdmTMB( # data = sim_dat, formula = observed ~ 1, # mesh = mesh, family = censored_poisson(link = "log"), # experimental = list(lwr = upr, upr = lwr) # ), regexp = "lwr") # wrong length lwr and upr expect_error( m <- sdmTMB( data = sim_dat, formula = observed ~ 1, mesh = mesh, family = censored_poisson(link = "log"), control = sdmTMBcontrol(censored_upper = c(4, 5, 6)) ), regexp = "upr") # missing lwr/upr expect_error( m <- sdmTMB( data = sim_dat, formula = observed ~ 1, mesh = mesh, family = censored_poisson(link = "log"), ), regexp = "censored_upper") }) test_that("Censored Poisson upper limit function works", { dat <- structure( list( n_catch = c( 78L, 63L, 15L, 6L, 7L, 11L, 37L, 99L, 34L, 100L, 77L, 79L, 98L, 30L, 49L, 33L, 6L, 28L, 99L, 33L ), prop_removed = c( 0.61, 0.81, 0.96, 0.69, 0.99, 0.98, 0.25, 0.95, 0.89, 1, 0.95, 0.95, 0.94, 1, 0.95, 1, 0.84, 0.3, 1, 0.99 ), n_hooks = c( 140L, 140L, 140L, 140L, 140L, 140L, 140L, 140L, 140L, 140L, 140L, 140L, 140L, 140L, 140L, 140L, 140L, 140L, 140L, 140L ) ), class = "data.frame", row.names = c(NA, -20L) ) upr <- get_censored_upper(dat$prop_removed, dat$n_catch, dat$n_hooks, pstar = 0.9) expect_identical(upr, c(78, 63, 28, 6, 39, 34, 37, 109, 34, 140, 87, 89, 105, 70, 59, 73, 6, 28, 139, 65)) x <- get_censored_upper( prop_removed = c(0.5, 0.3, 0.2), n_catch = c(3, 3, 3), n_hooks = c(5, 5, 5), pstar = 0.9 ) expect_equal(x, c(3, 3, 3)) expect_error( get_censored_upper( prop_removed = c(0.5, 0.3, 0.2), n_catch = c(3, 3), n_hooks = c(5, 5, 5), pstar = 0.9 ), regexp = "length" ) expect_error( get_censored_upper( prop_removed = c(0.5, 0.3, 0.2), n_catch = c(3, 3, 3), n_hooks = c(5, 5), pstar = 0.9 ), regexp = "length" ) expect_error( get_censored_upper( prop_removed = 1.1, n_catch = 1, n_hooks = 1 ), regexp = "1" ) expect_error( get_censored_upper( prop_removed = -0.1, n_catch = 1, n_hooks = 1 ), regexp = "0" ) expect_error( get_censored_upper( prop_removed = 0.5, n_catch = -1, n_hooks = 1 ), regexp = "0" ) expect_error( get_censored_upper( prop_removed = 0.5, n_catch = 0, n_hooks = -1 ), regexp = "0" ) expect_error( get_censored_upper( prop_removed = 0.5, n_catch = NA_integer_, n_hooks = -1 ), regexp = "missing" ) expect_error( get_censored_upper( prop_removed = 0.5, n_catch = 1, n_hooks = NA_integer_ ), regexp = "missing" ) }) test_that("Binomial simulation/residuals works with weights argument or cbind()", { set.seed(1) w <- sample(1:9, size = 300, replace = TRUE) dat <- data.frame(y = stats::rbinom(300, size = w, 0.5)) dat$prop <- dat$y / w m <- sdmTMB(prop ~ 1, data = dat, weights = w, family = binomial(), spatial = "off") r <- residuals(m) expect_true(sum(is.infinite(r)) == 0L) set.seed(1) stats::qqnorm(r) stats::qqline(r) set.seed(1) s <- simulate(m, nsim = 500) expect_equal(mean(dat$y), mean(s), tolerance = 0.1) expect_equal(mean(apply(s, 1, mean) - dat$y), 0, tolerance = 0.01) # cbind() approach: dat$y0 <- w - dat$y m2 <- sdmTMB(cbind(y, y0) ~ 1, data = dat, family = binomial(), spatial = "off") expect_equal(m$model$par, m2$model$par) set.seed(1) r2 <- residuals(m2) expect_true(sum(is.infinite(r2)) == 0L) stats::qqnorm(r2) stats::qqline(r2) set.seed(1) s2 <- simulate(m2, nsim = 500) expect_equal(mean(dat$y), mean(s2), tolerance = 0.1) expect_equal(mean(apply(s2, 1, mean) - dat$y), 0, tolerance = 0.01) }) test_that("Generalized gamma works", { skip_on_cran() d <- subset(pcod_2011, density > 0) fit1 <- sdmTMB( density ~ 1 + depth_scaled, data = d, spatial = "off", family = lognormal(link = "log") ) fit2 <- sdmTMB( density ~ 1 + depth_scaled, data = d, spatial = "off", family = Gamma(link = "log") ) fit3 <- sdmTMB( density ~ 1 + depth_scaled, data = d, spatial = "off", family = gengamma(link = "log") ) expect_s3_class(fit2, "sdmTMB") logLik(fit1) logLik(fit2) logLik(fit3) get_df <- function(x) { L <- logLik(x) attr(L, "df") } df1 <- get_df(fit1) df2 <- get_df(fit2) df3 <- get_df(fit3) expect_identical(df1, 3L) expect_identical(df3, 4L) b <- as.list(fit3$sd_report, "Estimate") expect_equal(b$gengamma_Q, 0.04212623, tolerance = 0.001) AIC(fit1) AIC(fit2) AIC(fit3) }) test_that("Generalized gamma matches Gamma when Q = sigma", { skip_on_cran() # Generate values drawn from generaliased gamma distribution given the mean of those values rgengamma <- function(n, mean, sigma, Q) { # Get mu from mean k <- Q^-2 beta <- Q / sigma log_theta <- log(mean) - lgamma( (k*beta+1)/beta ) + lgamma( k ) mu <- log_theta + log(k) / beta if (Q != 0) { w <- log(Q^2 * rgamma(n, 1 / Q^(2), 1)) / Q y <- exp(mu + (sigma * w)) } else { y <- rlnorm(n, mu, sigma) } return(y) } sigma <- 0.5 Q <- sigma mean <- 5 n <- 10000 # Regression coefficients (effects) intercept <- 1 b1 <- 1.8 # Generate covariate values set.seed(1) x <- runif(n, min = 0, max = 2) # Compute mu's coefs_true <- matrix(c(intercept, b1)) X <- matrix(cbind(1, x), ncol = 2) y_mean <- exp(X %*% coefs_true) set.seed(10) y <- rgengamma(n = n, mean = y_mean, sigma = sigma, Q = Q) # Should get the same answers with flexsurv::rgengamma # set.seed(10) # y_flex <- flexsurv::rgengamma(n = n, mu = y_mu, sigma = sigma, Q = Q) d <- data.frame(x = x, y = y) fit1 <- sdmTMB( y ~ x, data = d, spatial = "off", family = gengamma(link = "log") ) fit2 <- sdmTMB( y ~ x, data = d, spatial = "off", family = Gamma(link = "log") ) b <- as.list(fit1$sd_report, "Estimate") expect_equal(b$gengamma_Q, 0.5, tolerance = 0.1) expect_equal(b$b_j[1], 1, tolerance = 0.01) expect_equal(b$b_j[2], 1.8, tolerance = 0.01) })