test_that("sdmTMB_simulate works for different spatiotemporal field types", { skip_on_cran() # make fake predictor(s) (a1) and sampling locations: set.seed(123) predictor_dat <- data.frame( X = runif(2000), Y = runif(2000), a1 = rnorm(2000), year = rep(1:10, each = 200) ) cutoff <- 0.1 sim_mesh <- sdmTMB::make_mesh(predictor_dat, xy_cols = c("X", "Y"), cutoff = cutoff) plot(sim_mesh) fe_default <- 0.5 range_default <- 0.3 sigma_default <- 0.1 test_sim <- function(b0 = 0.5, b1 = -fe_default, phi = 0.1, mtrange = range_default, rho = NULL, sigma_O = sigma_default, sigma_E = sigma_default, model_type = "IID") { sim_dat <- sdmTMB::sdmTMB_simulate( formula = ~ 1 + a1, data = predictor_dat, time = "year", mesh = sim_mesh, family = gaussian(), range = mtrange, rho = rho, sigma_O = sigma_O, sigma_E = sigma_E, phi = phi, seed = 42, B = c(b0, b1) # B0 = intercept, B1 = a1 slope ) fit <- sdmTMB::sdmTMB(observed ~ a1, data = sim_dat, mesh = sim_mesh, time = "year", spatiotemporal = model_type ) if (all(unlist(sanity(fit, gradient_thresh = 0.01)))) { sr <- as.list(fit$sd_report, "Estimate") ty <- tidy(fit, effects = "ran_pars", conf.int = TRUE, silent = TRUE) out <- list() out[["model"]] <- fit # calculate the difference between estimate and true out["b0"] <- sr$b_j[1] - b0 out["b1"] <- sr$b_j[2] - b1 out["phi"] <- exp(sr$ln_phi[1]) - phi out["range"] <- ty$estimate[ty$term == "range"] - mtrange out["rho"] <- ifelse(is.null(rho), 0, ty$estimate[ty$term == "rho"] - rho) out["sigma_O"] <- ty$estimate[ty$term == "sigma_O"] - sigma_O out["sigma_E"] <- ifelse(is.null(sigma_E), 0, ty$estimate[ty$term == "sigma_E"] - sigma_E) out } else { out <- list() out[["model"]] <- fit out } } # tests with IID # fixed_effect_default 0.7 # range = 0.4 # phi = 0.1 # sigmas = 0.1 # mesh uncertainty/cutoff = 0.1 t1 <- test_sim() t1[[1]] # fixed effect within 5% of true value expect_lt(abs(t1[["b1"]]), fe_default*0.05) # range error within 0.1 mesh cutoff expect_lt(abs(t1[["range"]]), cutoff) # check if CI of estimates overlaps simulation value (ci <- tidy(t1[[1]], effects = "ran_pars", conf.int = TRUE, silent = TRUE)) expect_lt(sigma_default, ci$conf.high[ci$term=="sigma_O"]) expect_gt(sigma_default, ci$conf.low[ci$term=="sigma_O"]) expect_lt(sigma_default, ci$conf.high[ci$term=="sigma_E"]) expect_gt(sigma_default, ci$conf.low[ci$term=="sigma_E"]) # increase sigma_O t <- test_sim(sigma_O = 0.4, sigma_E = 0.1) t[[1]] expect_lt(abs(t[["b1"]]), fe_default*0.05) expect_lt(abs(t[["range"]]), cutoff) # check if CI of estimates overlaps simulation value (ci <- tidy(t[[1]], effects = "ran_pars", conf.int = TRUE, silent = TRUE)) expect_lt(0.4, ci$conf.high[ci$term=="sigma_O"]) expect_gt(0.4, ci$conf.low[ci$term=="sigma_O"]) expect_lt(0.1, ci$conf.high[ci$term=="sigma_E"]) expect_gt(0.1, ci$conf.low[ci$term=="sigma_E"]) # increase just sigma_E t <- test_sim(sigma_O = 0.1, sigma_E = 0.3) t[[1]] expect_lt(abs(t[["b1"]]), fe_default*0.05) expect_lt(abs(t[["range"]]), cutoff) # just barely fails at 5% # check if CI of estimates overlaps simulation value (ci <- tidy(t[[1]], effects = "ran_pars", conf.int = TRUE, silent = TRUE)) expect_lt(0.1, ci$conf.high[ci$term=="sigma_O"]) expect_gt(0.1, ci$conf.low[ci$term=="sigma_O"]) expect_lt(0.3, ci$conf.high[ci$term=="sigma_E"]) expect_gt(0.3, ci$conf.low[ci$term=="sigma_E"]) # increase both sigmas by a lot sigma_O > sigma_E t <- test_sim(sigma_O = 0.8, sigma_E = 0.4) t[[1]] expect_lt(abs(t[["b1"]]), fe_default*0.05)# intercept gets harder to estimate expect_lt(abs(t[["range"]]), cutoff) # check if CI of estimates overlaps simulation value (ci <- tidy(t[[1]], effects = "ran_pars", conf.int = TRUE, silent = TRUE)) expect_lt(0.8, ci$conf.high[ci$term=="sigma_O"]) expect_gt(0.8, ci$conf.low[ci$term=="sigma_O"]) expect_lt(0.4, ci$conf.high[ci$term=="sigma_E"]) expect_gt(0.4, ci$conf.low[ci$term=="sigma_E"]) # adjust range lower t <- test_sim(mtrange = range_default-0.15) t[[1]] # fixed effect within 5% of true value expect_lt(abs(t[["b1"]]), fe_default*0.05) # estimate is lower than that for the default model by the amount we've changed the range from that value expect_lt(abs(t[["range"]]), cutoff) # check if CI of estimates overlaps simulation value (ci <- tidy(t[[1]], effects = "ran_pars", conf.int = TRUE, silent = TRUE)) expect_lt(sigma_default, ci$conf.high[ci$term=="sigma_O"]) expect_gt(sigma_default, ci$conf.low[ci$term=="sigma_O"]) expect_lt(sigma_default, ci$conf.high[ci$term=="sigma_E"]) expect_gt(sigma_default, ci$conf.low[ci$term=="sigma_E"]) # adjust range higher t <- test_sim(mtrange = range_default*1.5) t[[1]] # fixed effect within 5% of true value expect_lt(abs(t[["b1"]]), fe_default*0.05) expect_lt(abs(t[["range"]]), cutoff) # check if CI of estimates overlaps simulation value (ci <- tidy(t[[1]], effects = "ran_pars", conf.int = TRUE, silent = TRUE)) expect_lt(sigma_default, ci$conf.high[ci$term=="sigma_O"]) expect_gt(sigma_default, ci$conf.low[ci$term=="sigma_O"]) expect_lt(sigma_default, ci$conf.high[ci$term=="sigma_E"]) expect_gt(sigma_default, ci$conf.low[ci$term=="sigma_E"]) ## test AR1 t <- test_sim(rho = 0.4, sigma_O = 0.5, # needs larger sigma to be able to estimate it along with an AR1 sigma_E = 0.1, model_type = "AR1") t[[1]] if (require("ggplot2", quietly = TRUE)) { ggplot2::ggplot(t[[1]]$data, aes(X, Y, colour = observed)) + geom_point() + facet_wrap(~year) + scale_color_gradient2() } # expect within 0.15 of true value expect_lt(abs(t[["rho"]]), 0.15) # with one seed, rho was consistently 0.1 larger than the value used in simulation # fixed effect within 5% of true value expect_lt(abs(t[["b1"]]), fe_default*0.05) # range within 10% of true value expect_lt(abs(t[["range"]]), cutoff) # check if CI of estimates overlaps simulation value (ci <- tidy(t[[1]], effects = "ran_pars", conf.int = TRUE, silent = TRUE)) expect_lt(sigma_default, ci$conf.high[ci$term=="sigma_O"]) # expect_gt(sigma_default, ci$conf.low[ci$term=="sigma_O"]) expect_lt(sigma_default, ci$conf.high[ci$term=="sigma_E"]) # expect_gt(sigma_default, ci$conf.low[ci$term=="sigma_E"]) ## test high AR1 values t <- test_sim(rho = 0.95, sigma_O = 0.7, # needs larger sigma to be able to estimate it along with an AR1 sigma_E = 0.2, model_type = "AR1") if (require("ggplot2", quietly = TRUE)) { ggplot2::ggplot(t[[1]]$data, aes(X, Y, colour = observed)) + geom_point() + facet_wrap(~year) + scale_color_gradient2() } t[[1]] expect_lt(abs(t[["rho"]]), 0.1) # fixed effect within 5% of true value expect_lt(abs(t[["b1"]]), fe_default*0.05) # range within 10% of true value expect_lt(abs(t[["range"]]), cutoff) # check if CI of estimates overlaps simulation value (ci <- tidy(t[[1]], effects = "ran_pars", conf.int = TRUE, silent = TRUE)) expect_lt(0.7, ci$conf.high[ci$term=="sigma_O"]) expect_gt(0.7, ci$conf.low[ci$term=="sigma_O"]) expect_lt(0.2, ci$conf.high[ci$term=="sigma_E"]) expect_gt(0.2, ci$conf.low[ci$term=="sigma_E"]) t <- test_sim(rho = 0.99, sigma_O = 0.7, # needs larger sigma to be able to estimate it along with an AR1 sigma_E = 0.2, model_type = "RW") if (require("ggplot2", quietly = TRUE)) { ggplot2::ggplot(t[[1]]$data, aes(X, Y, colour = observed)) + geom_point() + facet_wrap(~year) + scale_color_gradient2() } t[[1]] # fixed effect within 5% of true value expect_lt(abs(t[["b1"]]), fe_default*0.05) expect_lt(abs(t[["range"]]), cutoff) # check if CI of estimates overlaps simulation value (ci <- tidy(t[[1]], effects = "ran_pars", conf.int = TRUE, silent = TRUE)) expect_lt(0.7, ci$conf.high[ci$term=="sigma_O"]) expect_gt(0.7, ci$conf.low[ci$term=="sigma_O"]) # expect_lt(0.2, ci$conf.high[ci$term=="sigma_E"]) # RW underestimates sigma_E? expect_gt(0.2, ci$conf.low[ci$term=="sigma_E"]) })