test_that("REML works", { skip_on_cran() set.seed(1) pcod$year_f <- as.factor(pcod$year) fit_glmm <- glmmTMB::glmmTMB(present ~ 1 + (1 | year_f), data = pcod, family = binomial() ) fit_glmm_reml <- glmmTMB::glmmTMB(present ~ 1 + (1 | year_f), data = pcod, REML = TRUE, family = binomial() ) fit_sdm <- sdmTMB(present ~ 1 + (1 | year_f), data = pcod, spatial = "off", family = binomial() ) # warning thrown if glmmTMB argument mistakenly used expect_error({ fit_sdm_wrong <- sdmTMB(present ~ 1 + (1 | year_f), data = pcod, spatial = "off", REML = TRUE, family = binomial() ) }) fit_sdm_reml <- sdmTMB(present ~ 1 + (1 | year_f), data = pcod, spatial = "off", reml = TRUE, family = binomial() ) AIC(fit_glmm, fit_sdm, fit_glmm_reml, fit_sdm_reml) # check that the AIC calculations match expect_equal(AIC(fit_glmm), AIC(fit_sdm), tolerance = 1e-8) expect_equal(AIC(fit_glmm_reml), AIC(fit_sdm_reml), tolerance = 1e-8) # check that the global intercepts match for ML b1 <- summary(fit_glmm)$coefficients$cond[1] b2 <- tidy(fit_sdm)$estimate[1] expect_equal(b1, b2, tolerance = 1e-5) # check that the global intercepts still match for REML b1_reml <- summary(fit_glmm_reml)$coefficients$cond[1] b2_reml <- tidy(fit_sdm_reml)$estimate[1] expect_equal(b1_reml, b2_reml, tolerance = 1e-5) # check that the random effect variances match for ML b1_re <- sqrt(summary(fit_glmm)$varcor$cond[[1]])[1] b2_re <- tidy(fit_sdm, effects = "ran_pars")$estimate[1] expect_equal(b1_re, b2_re, tolerance = 1e-5) # check that the random effect variances still match for REML b1_reml_re <- sqrt(summary(fit_glmm_reml)$varcor$cond[[1]])[1] b2_reml_re <- tidy(fit_sdm_reml, effects = "ran_pars")$estimate[1] expect_equal(b1_reml_re, b2_reml_re, tolerance = 1e-5) }) test_that("REML works for delta models", { skip_on_cran() set.seed(1) pcod$year_f <- as.factor(pcod$year) pcod_pos <- subset(pcod, density > 0) fit_glmm <- glmmTMB::glmmTMB(density ~ 1 + (1 | year_f), data = pcod_pos, family = Gamma("log") ) fit_sdm <- sdmTMB(density ~ 1 + (1 | year_f), data = pcod_pos, spatial = "off", family = Gamma("log") ) fit_glmm_reml <- glmmTMB::glmmTMB(density ~ 1 + (1 | year_f), data = pcod_pos, REML = TRUE, family = Gamma("log") ) fit_sdm_reml <- sdmTMB(density ~ 1 + (1 | year_f), data = pcod_pos, spatial = "off", reml = TRUE, family = Gamma("log") ) AIC(fit_glmm, fit_sdm, fit_glmm_reml, fit_sdm_reml) # check that the AIC calculations match expect_equal(AIC(fit_glmm), AIC(fit_sdm), tolerance = 1e-8) expect_equal(AIC(fit_glmm_reml), AIC(fit_sdm_reml), tolerance = 1e-8) # check that the global intercepts match for ML b1 <- summary(fit_glmm)$coefficients$cond[1] b2 <- tidy(fit_sdm)$estimate[1] expect_equal(b2, b1, tolerance = 1e-6) # check that the global intercepts still match for REML b1_reml <- summary(fit_glmm_reml)$coefficients$cond[1] b2_reml <- tidy(fit_sdm_reml)$estimate[1] expect_equal(b2_reml, b1_reml, tolerance = 1e-6) # REML is doing something more than just difference between model runs expect_false(((b2_reml - b2) > 1e-4)) # now try delta models fit_dg_reml <- sdmTMB(density ~ 1 + (1 | year_f), data = pcod, spatial = "off", reml = TRUE, family = delta_gamma() ) # global intercepts match delta model 2 with REML b3_reml <- tidy(fit_dg_reml, model = 2)$estimate[1] expect_equal(b3_reml, b2_reml, tolerance = 1e-6) # sigma_G match delta model 2 with REML b2_reml_re <- tidy(fit_sdm_reml, effects = "ran_pars") b3_reml_re <- tidy(fit_dg_reml, effects = "ran_pars", model = 2) expect_equal(b3_reml_re$estimate[b3_reml_re$term=="sigma_G"], b2_reml_re$estimate[b2_reml_re$term=="sigma_G"], tolerance = 1e-6) # REML is still doing something with delta models with spatial fields mesh <- make_mesh(pcod, c("X", "Y"), cutoff = 10) fit_dg2 <- sdmTMB(density ~ 1 + (1 | year_f), data = pcod, spatial = "on", mesh = mesh, family = delta_gamma() ) fit_dg2_reml <- sdmTMB(density ~ 1 + (1 | year_f), data = pcod, spatial = "on", mesh = mesh, reml = TRUE, family = delta_gamma() ) b4 <- tidy(fit_dg2, model = 2)$estimate[1] b4_reml <- tidy(fit_dg2_reml, model = 2)$estimate[1] # effect of reml on fixed effects in delta model expect_false((abs(b4_reml - b4) < 0.01)) b4_re <- tidy(fit_dg2, effects = "ran_pars", conf.int = T, model = 2)#$estimate[4] b4_reml_re <- tidy(fit_dg2_reml, effects = "ran_pars", conf.int = T, model = 2)#$estimate[4] # effect of reml on sigma_G in delta model expect_false((abs(b4_reml_re$estimate[b4_reml_re$term=="sigma_G"] - b4_re$estimate[b4_re$term=="sigma_G"]) < 0.01)) })