test_that("Basic prior parsing works", { expect_equal(normal(0, 1), matrix(c(0, 1), ncol = 2L), ignore_attr = TRUE) expect_equal(halfnormal(0, 1), matrix(c(0, 1), ncol = 2L), ignore_attr = TRUE) expect_equal(pc_matern(5, 5, 0.05, 0.05), c(5, 5, 0.05, 0.05), ignore_attr = TRUE) expect_error(normal(NA, 1)) expect_error(normal(0, -1)) expect_error(normal(1, NA)) expect_error(normal(c(1, 1), 1)) expect_error(pc_matern(NA, 1)) expect_error(pc_matern(1, NA)) expect_error(pc_matern(-1, 1)) expect_error(pc_matern(1, -1)) expect_error(pc_matern(1, 1, 1.5, 0.05)) expect_error(pc_matern(1, 1, -1.5, 0.05)) expect_error(pc_matern(1, 1, 0.05, -0.05)) expect_error(pc_matern(1, 1, 0.05, NA)) }) test_that("Prior fitting works", { skip_on_cran() d <- pcod_2011 pcod_spde <- pcod_mesh_2011 # no priors m <- sdmTMB(density ~ 0 + depth_scaled + depth_scaled2 + as.factor(year), data = d, time = "year", mesh = pcod_spde, family = tweedie(link = "log"), spatiotemporal = "AR1", share_range = FALSE ) # population-effects missing a prior; should error expect_error( { mp <- sdmTMB(density ~ 0 + depth_scaled + depth_scaled2 + as.factor(year), data = d, time = "year", mesh = pcod_spde, family = tweedie(link = "log"), share_range = FALSE, spatiotemporal = "AR1", priors = sdmTMBpriors( b = normal(c(0, 0, NA, NA, NA), c(2, 2, NA, NA, NA)) ) ) }, regexp = "prior" ) # all the priors mp <- sdmTMB(density ~ 0 + depth_scaled + depth_scaled2 + as.factor(year), data = d, time = "year", mesh = pcod_spde, family = tweedie(link = "log"), share_range = FALSE, spatiotemporal = "AR1", priors = sdmTMBpriors( b = normal(c(0, 0, NA, NA, NA, NA), c(2, 2, NA, NA, NA, NA)), phi = halfnormal(0, 10), # tweedie_p = normal(1.5, 2), ar1_rho = normal(0, 1), matern_s = pc_matern(range_gt = 5, sigma_lt = 1), matern_st = pc_matern(range_gt = 5, sigma_lt = 1) ) ) expect_lt(abs(mp$model$par[1]), abs(m$model$par[1])) expect_gt(mp$model$par[["ln_tau_O"]], m$model$par[["ln_tau_O"]]) expect_gt(mp$model$par[["ln_tau_E"]], m$model$par[["ln_tau_E"]]) }) test_that("Priors on random intercept SDs work", { skip_on_cran() pcod$fyear <- as.factor(pcod$year) fit0 <- sdmTMB( density ~ 1 + (1 | fyear), family = tweedie(), data = pcod, spatial = "off" ) fit1 <- sdmTMB( density ~ 1 + (1 | fyear), family = tweedie(), data = pcod, spatial = "off", priors = sdmTMBpriors(sigma_G = halfnormal(0, 0.1)) ) t0 <- tidy(fit0, "ran_pars") t1 <- tidy(fit1, "ran_pars") G0 <- t0$estimate[t0$term == "sigma_G"] G1 <- t1$estimate[t0$term == "sigma_G"] expect_lt(G1, G0) # prior reduces SD fit0 <- sdmTMB( density ~ 1 + (1 | fyear), family = poisson(), data = pcod, spatial = "off" ) pcod$fake_count <- round(pcod$density) pcod$obs_id <- as.factor(seq_len(nrow(pcod))) fit0 <- sdmTMB( fake_count ~ 1 + (1 | fyear) + (1 | obs_id), family = poisson(), data = pcod, spatial = "off" ) fit1 <- sdmTMB( fake_count ~ 1 + (1 | fyear) + (1 | obs_id), family = poisson(), data = pcod, spatial = "off", priors = sdmTMBpriors(sigma_G = halfnormal(c(0, 0), c(0.1, 0.1))) ) fit2 <- sdmTMB( fake_count ~ 1 + (1 | fyear) + (1 | obs_id), family = poisson(), data = pcod, spatial = "off", priors = sdmTMBpriors(sigma_G = halfnormal(c(1, 0), c(0.1, 0.5))) ) t0 <- tidy(fit0, "ran_pars") t1 <- tidy(fit1, "ran_pars") t2 <- tidy(fit2, "ran_pars") G0 <- t0$estimate[t0$term == "sigma_G"][2] G1 <- t1$estimate[t0$term == "sigma_G"][2] G2 <- t2$estimate[t0$term == "sigma_G"][2] expect_lt(G1, G0) # prior reduces SD expect_lt(G1, G2) # stronger prior reduces SD more # high mean prior keeps SD away from zero: G1 <- t1$estimate[t0$term == "sigma_G"][1] G2 <- t2$estimate[t0$term == "sigma_G"][1] expect_gt(G2, G1) }) test_that("Additional priors work", { skip_on_cran() d <- pcod_2011 pcod_spde <- pcod_mesh_2011 # priors with one covariate/intercept only and the normal scale not 1: m_norm <- sdmTMB(density ~ 1, data = d, mesh = pcod_spde, family = tweedie(link = "log"), priors = sdmTMBpriors(b = normal(0, 10)), spatial = "off", spatiotemporal = "off" ) # univariate normal priors m_norm <- sdmTMB(density ~ 0 + depth_scaled + depth_scaled2 + as.factor(year), data = d, mesh = pcod_spde, family = tweedie(link = "log"), priors = sdmTMBpriors(b = normal(rep(0, 6), rep(1, 6))), spatial = "off", spatiotemporal = "off" ) expect_identical(class(m_norm), "sdmTMB") m_mvn <- sdmTMB(density ~ 0 + depth_scaled + depth_scaled2 + as.factor(year), data = d, mesh = pcod_spde, family = tweedie(link = "log"), priors = sdmTMBpriors(b = mvnormal(rep(0, 6), diag(1, 6))), spatial = "off", spatiotemporal = "off" ) expect_identical(class(m_mvn), "sdmTMB") m_mvn_na <- sdmTMB(density ~ 0 + depth_scaled + depth_scaled2 + as.factor(year), data = d, mesh = pcod_spde, family = tweedie(link = "log"), priors = sdmTMBpriors(b = mvnormal(c(NA, 0, 0, 0, 0, 0), diag(1, 6))), spatial = "off", spatiotemporal = "off" ) expect_identical(class(m_mvn_na), "sdmTMB") m_norm_na <- sdmTMB(density ~ 0 + depth_scaled + depth_scaled2 + as.factor(year), data = d, mesh = pcod_spde, family = tweedie(link = "log"), priors = sdmTMBpriors(b = normal(c(NA, rep(0, 5)), c(NA, rep(1, 5)))), spatial = "off", spatiotemporal = "off" ) expect_identical(class(m_norm_na), "sdmTMB") expect_equal(tidy(m_norm), tidy(m_mvn), tolerance = 0.0001) expect_equal(tidy(m_norm_na), tidy(m_mvn_na), tolerance = 0.0001) expect_true( abs(tidy(m_mvn)$estimate[tidy(m_mvn)$term == "depth_scaled"]) < abs(tidy(m_mvn_na)$estimate[tidy(m_mvn_na)$term == "depth_scaled"]) ) })