test_that("share_range mapping works with delta models", { skip_on_cran() pcod_spde <- make_mesh(pcod, c("X", "Y"), cutoff = 15) fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", spatiotemporal = list("off", "rw"), time = "year", do_fit = FALSE, family = delta_gamma(), share_range = TRUE, ) expect_identical(fit$tmb_map$ln_kappa, as.factor(c(NA, NA, 1, 1))) fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", spatiotemporal = list("iid", "iid"), time = "year", do_fit = FALSE, family = delta_gamma(), share_range = list(TRUE, TRUE), ) expect_identical(fit$tmb_map$ln_kappa, as.factor(c(1, 1, 2, 2))) fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", spatiotemporal = list("iid", "iid"), time = "year", do_fit = FALSE, family = delta_gamma(), share_range = list(FALSE, TRUE), ) expect_identical(fit$tmb_map$ln_kappa, as.factor(c(1, 1, 2, 2))) fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", spatiotemporal = list("iid", "iid"), time = "year", do_fit = FALSE, family = delta_gamma(), share_range = list(FALSE, FALSE), ) expect_identical(fit$tmb_map$ln_kappa, as.factor(c(1, 1, 2, 2))) fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", spatiotemporal = list("iid", "iid"), time = "year", do_fit = FALSE, family = delta_gamma(), share_range = FALSE, ) expect_identical(fit$tmb_map$ln_kappa, as.factor(c(1, 1, 2, 2))) fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", spatiotemporal = list("iid", "iid"), time = "year", do_fit = FALSE, family = delta_gamma(), share_range = TRUE, ) expect_identical(fit$tmb_map$ln_kappa, as.factor(c(1, 1, 2, 2))) fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", spatiotemporal = list("off", "off"), time = "year", do_fit = FALSE, family = delta_gamma(), share_range = TRUE, ) expect_identical(fit$tmb_map$ln_kappa, as.factor(c(NA, NA, NA, NA))) # spatial models: fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, do_fit = TRUE, family = tweedie() ) expect_identical(fit$tmb_map$ln_kappa, as.factor(c(1, 1))) fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, do_fit = TRUE, family = delta_gamma() ) expect_identical(fit$tmb_map$ln_kappa, as.factor(c(1, 1, 2, 2))) }) test_that("spatial field mapping/specification works with delta models", { skip_on_cran() pcod_spde <- make_mesh(pcod, c("X", "Y"), cutoff = 20) fit1 <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "on", family = delta_gamma() ) s1 <- as.list(fit1$sd_report, "Estimate") s1$ln_tau_O fit2 <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = list("on", "on"), family = delta_gamma() ) s2 <- as.list(fit2$sd_report, "Estimate") s2$ln_tau_O expect_equal(s1, s2) fit3 <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", family = delta_gamma() ) s3 <- as.list(fit3$sd_report, "Estimate") s3$ln_tau_O fit4 <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = list("off", "on"), family = delta_gamma() ) s4 <- as.list(fit4$sd_report, "Estimate") s4$ln_tau_O expect_equal(s4$ln_tau_O[1], 0) expect_equal(s4$ln_tau_O[2], s2$ln_tau_O[2], tolerance = 0.01) pcod_spde2 <- make_mesh(pcod, c("X", "Y"), cutoff = 10) fit5 <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde2, spatial = list("on", "on"), time = "year", family = delta_gamma(), spatiotemporal = list("off", "iid") ) s <- as.list(fit5$sd_report, "Estimate") expect_gt(abs(s$ln_tau_O[1]), 0) expect_gt(abs(s$ln_tau_O[2]), 0) expect_equal(s$ln_tau_E[1], 0) expect_gt(abs(s$ln_tau_E[2]), 0) expect_output(print(fit5), regexp = "Spatiotemporal model") expect_output(print(fit5), regexp = "Spatiotemporal IID SD") fit6 <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = list("off", "on"), time = "year", family = delta_gamma(), spatiotemporal = list("off", "off") ) s6 <- as.list(fit6$sd_report, "Estimate") expect_equal(s6$ln_tau_O[1], 0) expect_gt(abs(s6$ln_tau_O[2]), 0) expect_equal(s6$ln_tau_E[1], 0) expect_equal(s6$ln_tau_E[2], 0) expect_output(print(fit6), regexp = "Spatial model") }) test_that("spatiotemporal field mapping/specification works with delta models", { skip_on_cran() pcod_spde <- make_mesh(pcod, c("X", "Y"), cutoff = 20) fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", time = "year", family = delta_gamma() ) s1 <- as.list(fit$sd_report, "Estimate") s1$ln_tau_E fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", time = "year", family = delta_gamma(), spatiotemporal = list("iid", "iid") ) s2 <- as.list(fit$sd_report, "Estimate") s2$ln_tau_E expect_equal(s1, s2) fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", time = "year", family = delta_gamma(), spatiotemporal = list("iid", "off") ) s <- as.list(fit$sd_report, "Estimate") expect_gt(abs(s$ln_tau_E[1]), 0) expect_equal(s$ln_tau_E[2], 0) expect_output(print(fit), regexp = "Spatiotemporal model") expect_output(print(fit), regexp = "Spatiotemporal IID SD") fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", time = "year", family = delta_gamma(), spatiotemporal = list("off", "iid") ) s <- as.list(fit$sd_report, "Estimate") expect_gt(abs(s$ln_tau_E[2]), 0) expect_equal(s$ln_tau_E[1], 0) print(fit) fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", time = "year", family = delta_gamma(), spatiotemporal = list("off", "off") ) s <- as.list(fit$sd_report, "Estimate") expect_equal(s$ln_tau_E[1], 0) expect_equal(s$ln_tau_E[2], 0) print(fit) expect_output(print(fit), regexp = "Model fit") fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", time = "year", family = delta_gamma(), spatiotemporal = list("ar1", "off") ) s <- as.list(fit$sd_report, "Estimate") expect_gt(abs(s$ar1_phi[1]), 0) expect_equal(s$ar1_phi[2], 0) expect_identical(fit$tmb_map$ar1_phi, as.factor(c(1, NA))) tidy(fit, "ran_pars", model = 1) tidy(fit, "ran_pars", model = 2) print(fit) expect_output(print(fit), regexp = "rho") fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", time = "year", family = delta_gamma(), spatiotemporal = list("off", "ar1") ) s <- as.list(fit$sd_report, "Estimate") expect_gt(abs(s$ar1_phi[2]), 0) expect_equal(s$ar1_phi[1], 0) expect_identical(fit$tmb_map$ar1_phi, as.factor(c(NA, 1))) print(fit) expect_output(print(fit), regexp = "rho") fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", time = "year", family = delta_gamma(), spatiotemporal = list("rw", "off") ) s <- as.list(fit$sd_report, "Estimate") expect_gt(abs(s$ln_tau_E[1]), 0) expect_equal(s$ln_tau_E[2], 0) fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", time = "year", family = delta_gamma(), spatiotemporal = list("ar1", "ar1") ) s1 <- as.list(fit$sd_report, "Estimate") print(fit) expect_output(print(fit), regexp = "rho") fit <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", time = "year", family = delta_gamma(), spatiotemporal = "ar1" ) s2 <- as.list(fit$sd_report, "Estimate") expect_equal(s1, s2) }) test_that("delta models work with different main effects", { skip_on_cran() mesh <- make_mesh(pcod_2011, c("X", "Y"), cutoff = 20) fit <- sdmTMB( formula = list( density ~ depth_scaled, density ~ depth_scaled + depth_scaled2 ), data = pcod_2011, mesh = mesh, spatial = "off", family = delta_gamma() ) s <- as.list(fit$sd_report, "Estimate") se <- as.list(fit$sd_report, "Std. Error") expect_true("b_j2" %in% names(s)) expect_true(all(!is.na(se$b_j2))) expect_true(all(!is.na(se$b_j))) tidy(fit) fit p <- predict(fit) # still works? fit <- sdmTMB( formula = density ~ depth_scaled + depth_scaled2, data = pcod_2011, mesh = mesh, spatial = "off", family = delta_gamma() ) fit p <- predict(fit) # one smoother works fit <- sdmTMB( formula = density ~ s(depth_scaled), data = pcod_2011, mesh = mesh, spatial = "off", family = delta_gamma() ) # should be same: fit2 <- sdmTMB( formula = list(density ~ s(depth_scaled), density ~ s(depth_scaled)), data = pcod_2011, mesh = mesh, spatial = "off", family = delta_gamma() ) expect_equal(fit$sd_report, fit2$sd_report) # diff smoothers throw an error for now expect_error( { fit <- sdmTMB( formula = list(density ~ s(depth_scaled), density ~ s(year, k = 3)), data = pcod_2011, mesh = mesh, spatial = "off", family = delta_gamma() ) }, regexp = "smooth" ) # diff random intercepts throw an error for now expect_error( { pcod_2011$fyear <- as.factor(pcod_2011$year) fit <- sdmTMB( formula = list(density ~ 1 + (1 | fyear), density ~ 1), data = pcod_2011, mesh = mesh, spatial = "off", family = delta_gamma() ) }, regexp = "random intercepts" ) # OK: fit <- sdmTMB( formula = list(density ~ 1 + (1 | fyear), density ~ 1 + (1 | fyear)), data = pcod_2011, mesh = mesh, spatial = "off", family = delta_gamma() ) }) test_that("Offset works with delta models", { skip_on_cran() set.seed(1) pcod$offset <- rnorm(nrow(pcod)) pcod_pos <- subset(pcod, density > 0) fit1 <- sdmTMB(present ~ 1, data = pcod, spatial = "off", family = binomial() ) fit2 <- sdmTMB(density ~ 1, data = pcod_pos, spatial = "off", family = Gamma(link = "log") ) fit2_off <- sdmTMB(density ~ 1, offset = pcod_pos$offset, data = pcod_pos, spatial = "off", family = Gamma(link = "log") ) # error thrown if offset doesn't match data length: expect_error( { fit2_off_wrong <- sdmTMB(density ~ 1, offset = pcod$offset, data = pcod_pos, spatial = "off", family = Gamma(link = "log") ) }, regexp = "length" ) fit_dg <- sdmTMB(density ~ 1, data = pcod, spatial = "off", family = delta_gamma() ) fit_dg_off <- sdmTMB(density ~ 1, offset = pcod$offset, data = pcod, spatial = "off", family = delta_gamma() ) pcod$offset2 <- log(1) fit_dg_off0 <- sdmTMB(density ~ 1, offset = pcod$offset2, data = pcod, spatial = "off", family = delta_gamma() ) # intercept only models so order not an issue b1 <- tidy(fit1)$estimate[1] b_dg1 <- tidy(fit_dg)$estimate[1] b_dg1_offset <- tidy(fit_dg_off)$estimate[1] b2 <- tidy(fit2)$estimate[1] b2_offset <- tidy(fit2_off)$estimate[1] dg2 <- tidy(fit_dg, model = 2)$estimate[1] dg2_offset <- tidy(fit_dg_off, model = 2)$estimate[1] dg2_offset0 <- tidy(fit_dg_off0, model = 2)$estimate[1] # the offset is doing something for pos part of delta model expect_false(((dg2_offset - dg2) == 0)) # binomial and delta model 1 without offset are same expect_equal(b_dg1, b1, tolerance = 1e-5) # offset doesn't affect binomial part of delta-Gamma expect_equal(b_dg1, b_dg1_offset, tolerance = 1e-5) # gamma on pos only and delta model 2 without offset are same expect_equal(dg2, b2, tolerance = 1e-5) # offset in Gamma part same in delta gamma as separate model: expect_equal(dg2_offset, b2_offset, tolerance = 1e-5) # the offset of 0 is same as no offset expect_equal(dg2_offset0, dg2, tolerance = 1e-8) }) test_that("test that delta beta model works", { skip_on_cran() set.seed(1) y01 <- stats::rbinom(1000, 1, 0.5) npos <- sum(y01 == 1) y <- y01 y[y == 1] <- stats::rbeta(npos, 3, 4) ypos <- y[y01 == 1] dat <- data.frame(y = y) fit <- sdmTMB( y ~ 1, data = dat, spatial = "off", family = delta_beta(), control = sdmTMBcontrol(newton_loops = 1L) ) d01 <- data.frame(y = y01) dpos <- data.frame(y = ypos) m1 <- glmmTMB::glmmTMB(y ~ 1, data = d01, family = binomial()) s1 <- tidy(fit, effects = c("fixed")) m2 <- glmmTMB::glmmTMB(y ~ 1, data = dpos, family = glmmTMB::beta_family()) s2 <- tidy(fit, effects = c("fixed"), model = 2) expect_equal(s1$estimate, m1$fit$par[[1]], tolerance = 1e-4) expect_equal(s2$estimate, m2$fit$par[[1]], tolerance = 1e-4) p <- predict(fit) p1 <- predict(m1) p2 <- predict(m2) # p <- predict(fit, type = "response") # glmmTMB_est <- stats::plogis(p1)[1] * stats::plogis(p2)[1] # expect_equal(p$est[1], glmmTMB_est, tolerance = 1e-4) r <- residuals(fit) qqnorm(r) qqline(r) set.seed(1) s <- simulate(fit) expect_gte(min(s), 0) expect_lte(min(s), 1) }) test_that("one spatial off in a delta model works", { skip_on_cran() mesh0 <- make_mesh(pcod, c("X", "Y"), cutoff = 30) m0 <- sdmTMB( density ~ 1, mesh = mesh0, data = pcod, spatial = list("off", "on"), #< spatiotemporal = list("off", "off"), silent = FALSE, time = "year", family = delta_gamma() ) # m0$tmb_map$omega_s # m0$tmb_map$ln_tau_O # m0$tmb_map$ln_kappa # m0$tmb_data$include_spatial # m0$tmb_data$spatial_only # m0$tmb_map$ln_tau_E # m0$tmb_map$epsilon_st # m0$tmb_params$ln_tau_E # m0$tmb_params$epsilon_re # m0$tmb_params$ln_tau_O pos <- subset(pcod, density > 0) mesh2 <- sdmTMB::make_mesh(pos, xy_cols = c("X", "Y"), mesh = mesh0$mesh) m2 <- sdmTMB( density ~ 1, mesh = mesh2, data = pos, spatial = "on", # <- spatiotemporal = "off", silent = FALSE, time = "year", family = Gamma(link = "log") ) # m0$tmb_obj$report()$sigma_O # s0 <- as.list(m0$sd_report, what = "Estimate", report = TRUE) # s0$sigma_E # s0$sigma_O # s0$range # # s2 <- as.list(m2$sd_report, what = "Estimate", report = TRUE) # s2$sigma_E # s2$range t0 <- tidy(m0, "ran_pars", model = 2) t2 <- tidy(m2, "ran_pars") expect_equal(t0, t2, tolerance = 0.01) # --------------------- # with sigma_E m0 <- sdmTMB( density ~ 1, mesh = mesh0, data = pcod, spatial = list("off", "off"), #< spatiotemporal = list("off", "iid"), #< share_range = FALSE, silent = FALSE, time = "year", control = sdmTMBcontrol(newton_loops = 0L), family = delta_gamma() ) m2 <- sdmTMB( density ~ 1, mesh = mesh2, data = pos, spatial = "off", # <- spatiotemporal = "iid", share_range = FALSE, silent = FALSE, time = "year", control = sdmTMBcontrol(newton_loops = 0L), family = Gamma(link = "log") ) t0 <- tidy(m0, "ran_pars", model = 2) t2 <- tidy(m2, "ran_pars") expect_equal(t0$estimate, t2$estimate, tolerance = 0.01) })