test_that("TMB IID simulation works", { skip_on_cran() set.seed(1) predictor_dat <- data.frame( X = runif(2000), Y = runif(2000), a1 = rnorm(2000), year = rep(1:10, each = 200) ) mesh <- make_mesh(predictor_dat, xy_cols = c("X", "Y"), cutoff = 0.1) sim_dat <- sdmTMB_simulate( formula = ~ 1 + a1, data = predictor_dat, time = "year", mesh = mesh, family = gaussian(), range = 0.5, sigma_E = 0.1, phi = 0.1, sigma_O = 0.2, seed = 42, B = c(0.2, -0.4) # B0 = intercept, B1 = a1 slope ) fit <- sdmTMB(observed ~ a1, sim_dat, mesh = mesh, time = "year") b <- tidy(fit) b expect_equal(b$estimate[b$term == "a1"], -0.4, tolerance = 0.1) expect_equal(b$estimate[b$term == "(Intercept)"], 0.2, tolerance = 0.2) b <- tidy(fit, "ran_pars") b }) test_that("TMB AR1 simulation works", { skip_on_cran() set.seed(1) predictor_dat <- data.frame( X = runif(2000), Y = runif(2000), a1 = rnorm(2000), year = rep(1:10, each = 200) ) mesh <- make_mesh(predictor_dat, xy_cols = c("X", "Y"), cutoff = 0.1) sim_dat <- sdmTMB_simulate( formula = ~1, data = predictor_dat, time = "year", mesh = mesh, family = gaussian(), range = 0.5, sigma_E = 0.1, phi = 0.1, sigma_O = 0, seed = 42, rho = 0.8, #< B = 0 # B0 = intercept, B1 = a1 slope ) fit <- sdmTMB(observed ~ 0, sim_dat, mesh = mesh, time = "year", spatiotemporal = "ar1", spatial = "off", ) b <- tidy(fit, "ran_pars") b rho_hat <- b$estimate[b$term == "rho"] expect_true(rho_hat > 0.7 && rho_hat < 0.9) sigma_E_hat <- b$estimate[b$term == "sigma_E"] expect_true(sigma_E_hat > 0.07 && sigma_E_hat < 0.13) }) test_that("TMB RW simulation works", { skip_on_cran() set.seed(1) predictor_dat <- data.frame( X = runif(2000), Y = runif(2000), a1 = rnorm(2000), year = rep(1:20, each = 200) ) mesh <- make_mesh(predictor_dat, xy_cols = c("X", "Y"), cutoff = 0.1) sim_dat <- sdmTMB_simulate( formula = ~1, data = predictor_dat, time = "year", mesh = mesh, family = gaussian(), range = 0.3, sigma_E = 0.1, phi = 0.05, sigma_O = 0, seed = 42, rho = 1, #< B = 0 ) fit_ar1 <- sdmTMB(observed ~ 0, sim_dat, mesh = mesh, time = "year", spatiotemporal = "ar1", #< spatial = "off" ) b_ar1 <- tidy(fit_ar1, "ran_pars") b_ar1 rho_hat <- b_ar1$estimate[b_ar1$term == "rho"] expect_true(rho_hat > 0.9) sigma_E_hat_ar1 <- b_ar1$estimate[b_ar1$term == "sigma_E"] fit_rw <- sdmTMB(observed ~ 0, sim_dat, mesh = mesh, time = "year", spatiotemporal = "rw", #< spatial = "off" ) b_rw <- tidy(fit_rw, "ran_pars") b_rw sigma_E_hat_rw <- b_rw$estimate[b_rw$term == "sigma_E"] sigma_E_hat_rw expect_true(sigma_E_hat_rw > 0.07 && sigma_E_hat_rw < 1.13) expect_true(sigma_E_hat_rw < sigma_E_hat_ar1) }) test_that("TMB (custom) AR1 simulation is unbiased", { # run many times; check for bias skip_on_cran() do_sim_fit <- function(i) { cat("Iteration", i, "\n") set.seed(i) predictor_dat <- data.frame( X = runif(1000), Y = runif(1000), a1 = rnorm(1000), year = rep(1:10, each = 100) ) mesh <- make_mesh(predictor_dat, xy_cols = c("X", "Y"), cutoff = 0.1) sim_dat <- sdmTMB_simulate( formula = ~1, data = predictor_dat, time = "year", mesh = mesh, family = gaussian(), range = 0.5, sigma_E = 0.1, phi = 0.1, sigma_O = 0, seed = i, rho = 0.8, B = 0 ) fit <- sdmTMB(observed ~ 0, sim_dat, mesh = mesh, time = "year", spatiotemporal = "ar1", spatial = "off", ) b <- tidy(fit, "ran_pars") rho_hat <- b$estimate[b$term == "rho"] range_hat <- b$estimate[b$term == "range"] sigma_E_hat <- b$estimate[b$term == "sigma_E"] data.frame(rho = rho_hat, sigma_E = sigma_E_hat, range = range_hat) } out <- lapply(seq_len(12L), function(i) do_sim_fit(i)) out <- do.call("rbind", out) expect_true(median(out$rho) > 0.79 && median(out$rho) < 0.81) expect_true(median(out$range) > 0.48 && median(out$range) < 0.52) expect_true(median(out$sigma_E) > 0.09 && median(out$sigma_E) < 0.11) }) test_that("simulate() behaves OK with or without random effects across types", { skip_on_cran() m <- sdmTMB( data = pcod_2011, formula = density ~ 1, mesh = pcod_mesh_2011, family = tweedie(link = "log") ) set.seed(1) s <- simulate(m) expect_length(s, 969) m2 <- update(m, spatial = "off") s <- simulate(m2) expect_length(s, 969) # has no random effects, switches to standard as needed: s <- simulate(m2, type = "mle-mvn") expect_length(s, 969) }) # test_that("TMB Delta simulation works", { # skip_on_cran() # skip_if_not_installed("INLA") # # set.seed(1) # predictor_dat <- data.frame( # X = runif(2000), Y = runif(2000), # a1 = rnorm(2000), year = 1 # ) # mesh <- make_mesh(predictor_dat, xy_cols = c("X", "Y"), cutoff = 0.1) # sim_dat <- sdmTMB_simulate( # formula = ~1, # data = predictor_dat, # time = "year", # mesh = mesh, # family = nbinom2(), # range = 0.3, # phi = 1, # sigma_O = 0.1, # seed = 1, # B = 1.5 # ) # sim_dat$observed[sample(1:nrow(sim_dat), size = 0.7*nrow(sim_dat), replace=T)] = 0 # fit <- sdmTMB(observed ~ 1, sim_dat, # mesh = mesh, # family = delta_truncated_nbinom2(), # share_range = TRUE # ) # # sim_1 <- simulate(fit, model = 1, nsim = 100) # expect_equal(ncol(sim_1), 100) # empirical_z <- 1 - length(which(sim_dat$observed==0)) / nrow(sim_dat) # expect_lt(max(abs(apply(sim_1,2,mean) - empirical_z)), 0.05) # # sim_2 <- simulate(fit, model = 2, nsim = 100) # expect_equal(ncol(sim_2), 100) # expect_lt(max(abs(apply(sim_2,2,mean,na.rm=T) - 5.67)), 0.65) # })