test_that("Regularization works", { skip_on_cran() local_edition(2) d <- subset(pcod, year >= 2015) d$depth_scaled <- as.numeric(scale(d$depth_scaled)) m1 <- sdmTMB(data = d, formula = density ~ 0 + depth_scaled + as.factor(year), mesh = make_mesh(d, c("X", "Y"), n_knots = 50, type = "kmeans"), family = tweedie(link = "log")) # Bypassing via NAs: m2 <- sdmTMB(data = d, formula = density ~ 0 + depth_scaled + as.factor(year), mesh = make_mesh(d, c("X", "Y"), n_knots = 50, type = "kmeans"), family = tweedie(link = "log"), priors = sdmTMBpriors(b = normal(c(NA, NA, NA), c(NA, NA, NA)))) expect_equal(m1$sd_report, m2$sd_report) # Ridge regression on depth term: m2 <- sdmTMB(data = d, formula = density ~ 0 + depth_scaled + as.factor(year), mesh = make_mesh(d, c("X", "Y"), n_knots = 50, type = "kmeans"), family = tweedie(link = "log"), priors = sdmTMBpriors(b = normal(c(0, NA, NA), c(1, NA, NA)))) b1 <- tidy(m1) b2 <- tidy(m2) expect_lt(b2$estimate[1], b1$estimate[2]) expect_lt(b2$std.error[1], b1$std.error[2]) }) test_that("A time-varying model fits and predicts appropriately", { skip_on_cran() local_edition(2) # SEED <- 42 # set.seed(SEED) # x <- stats::runif(60, -1, 1) # y <- stats::runif(60, -1, 1) # initial_betas <- 0.5 # range <- 0.5 # sigma_O <- 0 # sigma_E <- 0.1 # phi <- 0.1 # sigma_V <- 0.3 # loc <- data.frame(x = x, y = y) # spde <- make_mesh(loc, c("x", "y"), cutoff = 0.02) # # s <- sdmTMB_sim( # x = x, y = y, mesh = spde, range = range, # betas = initial_betas, time_steps = 12L, sigma_V = sigma_V, # phi = phi, sigma_O = sigma_O, sigma_E = sigma_E, # seed = SEED # ) spde <- make_mesh(pcod, c("X", "Y"), cutoff = 20) m <- sdmTMB(data = pcod, formula = density ~ 0, spatial = TRUE, time_varying = ~ 1, time = "year", mesh = spde, family = tweedie(), spatiotemporal = "off") expect_equal(exp(m$model$par["ln_tau_V"])[[1]], 0.5971512, tolerance = 0.001) tidy(m, effects = "ran_par") # b_t <- dplyr::group_by(s, time) %>% # dplyr::summarize(b_t = unique(b), .groups = "drop") %>% # dplyr::pull(b_t) # r <- m$tmb_obj$report() # b_t_fit <- r$b_rw_t[,,1] # plot(b_t, b_t_fit, asp = 1);abline(a = 0, b = 1) # expect_equal(mean((b_t- b_t_fit)^2), 0, tolerance = 1e-4) p <- predict(m, newdata = NULL) # plot(p$est, s$observed, asp = 1);abline(a = 0, b = 1) # expect_equal(mean((p$est - s$observed)^2), 0, tolerance = 0.01) cols <- c("est", "est_non_rf", "est_rf", "omega_s") p_nd <- predict(m, newdata = pcod) expect_equal(p[,cols], p_nd[,cols], tolerance = 1e-4) }) test_that("Year indexes get created correctly", { expect_identical(make_year_i(c(1, 2, 3)), c(0L, 1L, 2L)) expect_identical(make_year_i(c(1L, 2L, 3L)), c(0L, 1L, 2L)) expect_identical(make_year_i(c(1L, 2L, 4L)), c(0L, 1L, 2L)) expect_identical(make_year_i(c(1, 2, 4, 2)), c(0L, 1L, 2L, 1L)) expect_identical(make_year_i(c(1, 4, 2)), c(0L, 2L, 1L)) }) test_that("A spatially varying coefficient model fits", { skip_on_cran() d <- subset(pcod, year >= 2011) # subset for speed pcod_spde <- make_mesh(d, c("X", "Y"), cutoff = 30) d$scaled_year <- (d$year - mean(d$year)) / sd(d$year) m <- sdmTMB(density ~ depth_scaled, data = d, mesh = pcod_spde, family = tweedie(link = "log"), spatial_varying = ~ 0 + scaled_year, time = "year") expect_true(all(!is.na(summary(m$sd_report)[,"Std. Error"]))) nd <- replicate_df(qcs_grid, "year", unique(pcod$year)) nd$scaled_year <- scale(nd$year) p <- predict(m, newdata = subset(nd, year >= 2011)) }) test_that("SPDE as generated by make_mesh is consistent", { set.seed(42) skip_on_cran() set.seed(1) local_edition(2) x <- stats::runif(70, -1, 1) y <- stats::runif(70, -1, 1) loc <- data.frame(x = x, y = y) spde <- make_mesh(loc, c("x", "y"), cutoff = 0.02) # spot check first 10 locations loc_xy <- matrix(c( -0.468982674,-0.321854124, -0.255752201,0.678880700, 0.145706727,-0.306633022, 0.816415580,-0.332450138, -0.596636138,-0.047297510, 0.796779370,0.784396672, 0.889350537,0.728678941, 0.321595585,-0.220020913, 0.258228088,0.554641398, -0.876427459,0.921235994), ncol = 2, byrow = TRUE) expect_equal(c(spde$loc_xy[1:10,]), c(loc_xy[1:10,]), tolerance = 1e-8) # Depends on stable or testing INLA!? # test the n # expect_equal(spde$spde$param.inla$n, 141.0, tolerance = 1e-8) # expect_equal(spde$spde$param.inla$n, 150) # test M0 values - first 10 # expect_equal(c(0.06889138, 0.04169878, 0.01547313, 0.05734409, 0.03271476, 0.03672571, 0.05200510, 0.01293629, 0.03631651, 0.04446844), # as.numeric(spde$spde$param.inla$M0)[c(1,143,285,427,569,711,853,995,1137,1279)], tolerance=1e-4) # # test M1 values - first 10 # expect_equal(c(3.602458, 5.105182, 4.571970, 4.353246, 4.496775, 4.802626, 4.505773, 4.935963, 4.419817, 5.169096), # as.numeric(spde$spde$param.inla$M1)[c(1,143,285,427,569,711,853,995,1137,1279)], tolerance=1e-4) # # test M2 values - first 10 # expect_equal(c(253.1738,814.3858,1754.2543,401.3752,865.0118,754.9644,543.8968,2425.8404,729.7511,1014.0049), # as.numeric(spde$spde$param.inla$M2)[c(1,143,285,427,569,711,853,995,1137,1279)], tolerance=1e-4) }) # test_that("The `map` argument works.", { # skip_on_cran() # skip_on_ci() # d <- subset(pcod, year >= 2013) # pcod_spde <- make_mesh(d, c("X", "Y"), cutoff = 50) # # m <- sdmTMB(density ~ 0 + as.factor(year), # data = d, time = "year", mesh = pcod_spde, # family = tweedie(link = "log") # ) # p <- predict(m) # # .map <- m$tmb_map # .map$ln_tau_O <- as.factor(NA) # .map$ln_tau_E <- as.factor(NA) # .map$omega_s <- factor(rep(NA, length(m$tmb_params$omega_s))) # .map$epsilon_st <- factor(rep(NA, length(m$tmb_params$epsilon_st))) # .map$ln_kappa <- as.factor(NA) # # m.map <- sdmTMB(density ~ 0 + as.factor(year), # data = d, time = "year", mesh = pcod_spde, # family = tweedie(link = "log"), map = .map # ) # p.map <- predict(m.map) # # expect_true(all(p.map$omega_s == 0)) # expect_true(all(p.map$epsilon_st == 0)) # expect_true(!identical(p$est, p.map$est)) # }) test_that("profile option works", { skip_on_cran() d <- subset(pcod, year == 2013) pcod_spde <- make_mesh(d, c("X", "Y"), cutoff = 10) mp <- sdmTMB(density ~ depth_scaled + depth_scaled2, data = d, mesh = pcod_spde, control = sdmTMBcontrol(profile = TRUE), family = tweedie(link = "log") ) m <- sdmTMB(density ~ depth_scaled + depth_scaled2, data = d, mesh = pcod_spde, control = sdmTMBcontrol(profile = FALSE), family = tweedie(link = "log") ) expect_lt(length(mp$model$par), length(m$model$par)) bp <- tidy(mp) b <- tidy(m) expect_equal(bp$estimate, b$estimate, tolerance = 0.05) }) test_that("The mapping off spatial and spatiotemporal fields works.", { skip_on_cran() d <- subset(pcod, year >= 2013) pcod_spde <- make_mesh(d, c("X", "Y"), cutoff = 50) m <- sdmTMB(density ~ 0 + as.factor(year), data = d, time = "year", mesh = pcod_spde, family = tweedie(link = "log") ) p <- predict(m) m.map <- sdmTMB(density ~ 0 + as.factor(year), data = d, time = "year", mesh = pcod_spde, family = tweedie(link = "log"), spatial = "off", spatiotemporal = "off" ) p.map <- predict(m.map) expect_true(is.na(m.map$tmb_map$ln_tau_E)) expect_true(is.na(m.map$tmb_map$ln_tau_O)) expect_true(!identical(p$est, p.map$est)) expect_true(length(unique(p.map$est)) == length(unique(d$year))) # basic lm test: dpos <- d[d$density > 0, ] pcod_spde <- make_mesh(dpos, c("X", "Y"), cutoff = 50) m.sdmTMB.map <- sdmTMB(log(density) ~ depth, data = dpos, family = gaussian(), spatial = "off", spatiotemporal = "off", mesh = pcod_spde) m.stats.glm <- stats::lm(log(density) ~ depth, data = dpos) m.glmmTMB <- glmmTMB::glmmTMB(log(density) ~ depth, data = dpos) .t <- tidy(m.sdmTMB.map) expect_equal(.t$estimate, as.numeric(coef(m.stats.glm)), tolerance = 1e-5) expect_equal(exp(m.sdmTMB.map$model$par[["ln_phi"]]), glmmTMB::sigma(m.glmmTMB), tolerance = 1e-5) # Bernoulli: pcod_binom <- pcod_2011 pcod_binom$present <- ifelse(pcod_binom$density > 0, 1L, 0L) pcod_spde <- make_mesh(pcod_binom, c("X", "Y"), cutoff = 50) m.sdmTMB.map <- sdmTMB(present ~ depth, data = pcod_binom, family = binomial(link = "logit"), spatial = "off", spatiotemporal = "off", mesh = pcod_spde) m.stats.glm <- stats::glm(present ~ depth, data = pcod_binom, family = binomial(link = "logit")) m.glmmTMB <- glmmTMB::glmmTMB(present ~ depth, data = pcod_binom, family = binomial(link = "logit")) b1 <- as.numeric(unclass(glmmTMB::fixef(m.glmmTMB))$cond) b2 <- tidy(m.sdmTMB.map)$estimate b3 <- as.numeric(coef(m.stats.glm)) expect_equal(b1, b2, tolerance = 1e-6) expect_equal(b3, b2, tolerance = 1e-6) }) test_that("Large coordinates cause a warning.", { skip_on_cran() d <- subset(pcod, year == 2017) d$X <- d$X * 1000 d$Y <- d$Y * 1000 expect_warning(pcod_spde <- make_mesh(d, c("X", "Y"), cutoff = 70)) }) test_that("Random walk fields work", { skip_on_cran() d <- subset(pcod, year >= 2013) pcod_spde <- make_mesh(d, c("X", "Y"), cutoff = 15) m_rw <- sdmTMB(density ~ 1, data = d, time = "year", mesh = pcod_spde, control = sdmTMBcontrol(newton_loops = 1), family = tweedie(link = "log"), spatiotemporal = "RW" ) expect_identical(m_rw$tmb_data$rw_fields, TRUE) p_rw <- predict(m_rw) # close to AR1 with high rho: m_ar1 <- sdmTMB(density ~ 1, data = d, time = "year", mesh = pcod_spde, family = tweedie(link = "log"), spatiotemporal = "AR1", control = sdmTMBcontrol( newton_loops = 1, start = list(ar1_phi = qlogis((0.98 + 1) / 2)), map = list(ar1_phi = factor(NA))) ) expect_identical(m_ar1$tmb_data$ar1_fields, TRUE) expect_identical(m_ar1$tmb_data$rw_fields, FALSE) p_ar1 <- predict(m_ar1) expect_gt(stats::cor(p_ar1$est, p_rw$est), 0.9) }) test_that("start works", { skip_on_cran() expect_error({ m2 <- sdmTMB(density ~ poly(depth, 2), data = pcod_2011, mesh = pcod_mesh_2011, family = tweedie(), control = sdmTMBcontrol(start = list(ln_kappa = -1.78))) }, regexp = "kappa") expect_message({ m2 <- sdmTMB(density ~ poly(depth, 2), data = pcod_2011, mesh = pcod_mesh_2011, family = tweedie(), control = sdmTMBcontrol(start = list(ln_kappa = matrix(c(-1.78, -1.78), ncol = 1L)))) }, regexp = "ln_kappa") }) test_that("Multiple SVC works", { skip_on_cran() mesh <- make_mesh(pcod, c("X", "Y"), cutoff = 15) pcod$syear <- as.numeric(scale(pcod$year)) fit <- sdmTMB( density ~ 1, spatial_varying = ~ 0 + syear + depth_scaled, mesh = mesh, family = delta_gamma(), data = pcod ) fit$sd_report s <- as.list(fit$sd_report, "Std. Error") expect_true(sum(is.na(s$b_j)) == 0L) fit nd <- replicate_df(qcs_grid, "year", unique(pcod$year)) nd$syear <- as.numeric(scale(nd$year)) p <- predict(fit, newdata = nd) # p <- predict(fit, newdata = NULL) }) test_that("More esoteric prediction options work", { skip_on_cran() fit <- sdmTMB( density ~ depth_scaled, data = pcod_2011, mesh = pcod_mesh_2011, family = delta_gamma() ) expect_error(p <- predict(fit, nsim = 5, model = "aaa"), regexp = "model" ) expect_error(p <- predict(fit, nsim = 5, model = 99), regexp = "model" ) p <- predict(fit, nsim = 5, model = NA) head(p) p <- predict(fit, nsim = 5, model = 1) head(p) # p <- predict(fit, nsim = 5, model = 1, type = "response") # head(p) # expect_true(all(p <= 1 & p >= 0)) p <- predict(fit, nsim = 5, model = 2) head(p) # p <- predict(fit, nsim = 5, model = 2, type = "response") # head(p) # expect_true(all(p > 0)) p <- predict(fit, nsim = 5, model = 2, return_tmb_report = TRUE ) expect_length(p, 5L) fit <- sdmTMB( density ~ depth_scaled, data = pcod_2011, mesh = pcod_mesh_2011, family = tweedie() ) p <- predict(fit, nsim = 5) # p <- predict(fit, nsim = 5, type = "response") # head(p) # expect_true(all(p > 0)) }) test_that("update() works", { skip_on_cran() fit <- sdmTMB( density ~ depth_scaled, data = pcod_2011, mesh = pcod_mesh_2011, family = tweedie() ) fit2 <- update(fit) expect_equal(fit$model, fit2$model) }) test_that("Irregular time gets detected", { skip_on_cran() mesh <- make_mesh(pcod, c("X", "Y"), n_knots = 50) expect_message({ fit <- sdmTMB(density ~ 1, time = "year", data = pcod, mesh = mesh, family = tweedie(), spatiotemporal = "ar1", do_fit = FALSE ) }, regexp = "irregular time") expect_message({ fit <- sdmTMB(density ~ 1, time = "year", data = pcod, mesh = mesh, family = tweedie(), spatiotemporal = "ar1", do_fit = FALSE ) }, regexp = "c\\(2006, 2008, 2010, 2012, 2014, 2016\\)") expect_silent({ fit <- sdmTMB(density ~ 1, time = "year", data = pcod, mesh = mesh, family = tweedie(), spatiotemporal = "ar1", extra_time = c(2006, 2008, 2010, 2012, 2014, 2016), do_fit = FALSE ) }) }) test_that("find_missing_time works", { expect_identical(find_missing_time(c(1, 3, 4)), 2) expect_identical(find_missing_time(c(1, 3, 4, 5, 7)), c(2, 6)) expect_identical(find_missing_time(c(1, 2, 3)), numeric(0)) expect_identical(find_missing_time(c(1, 4, 3)), 2) expect_identical(find_missing_time(c(1L, 4L, 3L)), 2L) }) test_that("offset() throws an error", { expect_error({ fit <- sdmTMB( density ~ 1 + offset(depth), data = pcod_2011, mesh = pcod_mesh_2011, family = tweedie(link = "log") ) }, regexp = "offset") expect_error({ fit <- sdmTMB( density ~ 1 + offset(log(depth)), data = pcod_2011, mesh = pcod_mesh_2011, family = tweedie(link = "log") ) }, regexp = "offset") }) test_that("sdmTMB throws error on AR1/RW with non-numeric time", { skip_on_cran() pcod_2011$fyear <- as.factor(pcod_2011$year) fit <- sdmTMB(present ~ 1, family = binomial(), spatial = 'off', time = "fyear", spatiotemporal = "iid", data = pcod_2011, mesh = pcod_mesh_2011) expect_true(inherits(fit, "sdmTMB")) expect_error( fit <- sdmTMB(present ~ 1, family = binomial(), spatial = 'off', time = "fyear", spatiotemporal = "ar1", data = pcod_2011, mesh = pcod_mesh_2011), regexp = "Time" ) expect_error( fit <- sdmTMB(present ~ 1, family = binomial(), spatial = 'off', time = "fyear", spatiotemporal = "rw", data = pcod_2011, mesh = pcod_mesh_2011), regexp = "Time" ) pcod_2011$cyear <- as.character(pcod_2011$year) fit <- sdmTMB(present ~ 1, family = binomial(), spatial = 'off', time = "cyear", spatiotemporal = "iid", data = pcod_2011, mesh = pcod_mesh_2011) expect_true(inherits(fit, "sdmTMB")) expect_error( fit <- sdmTMB(present ~ 1, family = binomial(), spatial = 'off', time = "cyear", spatiotemporal = "ar1", data = pcod_2011, mesh = pcod_mesh_2011), regexp = "Time" ) expect_error( fit <- sdmTMB(present ~ 1, family = binomial(), spatial = 'off', time = "cyear", spatiotemporal = "rw", data = pcod_2011, mesh = pcod_mesh_2011), regexp = "Time" ) fit <- sdmTMB( present ~ 0 + depth, family = binomial(), spatial = 'off', time_varying = ~ 1, time = "year", data = pcod_2011, spatiotemporal = "off", mesh = pcod_mesh_2011 ) expect_error( fit <- sdmTMB( present ~ 0, family = binomial(), spatial = 'off', time_varying = ~ 1, time = "fyear", data = pcod_2011, spatiotemporal = "off", mesh = pcod_mesh_2011 )) expect_error( fit <- sdmTMB( present ~ 0, family = binomial(), spatial = 'off', time_varying = ~ 1, time = "cyear", data = pcod_2011, spatiotemporal = "off", mesh = pcod_mesh_2011 )) }) test_that("Time with an NA gets flagged", { skip_on_cran() d <- pcod_2011 d$yr <- as.character(d$year) d$yr[2] <- NA expect_error({ m <- sdmTMB(density ~ 1, time = "yr", spatial = "off", spatiotemporal = "off", data = d) }, regexp = "time") }) test_that("Prediction outside fitted coordinates gets warned about #285", { fit <- sdmTMB( present ~ 1, family = binomial(), data = pcod_2011, mesh = pcod_mesh_2011 ) nd <- qcs_grid range(nd$X) nd$X <- nd$X * 10 range(nd$X) expect_warning(p <- predict(fit, newdata = nd), regexp = "coordinates") nd <- qcs_grid nd$X <- nd$X / 10 expect_warning(p <- predict(fit, newdata = nd), regexp = "coordinates") nd <- qcs_grid nd$Y <- nd$Y / 10 expect_warning(p <- predict(fit, newdata = nd), regexp = "coordinates") nd <- qcs_grid nd$Y <- nd$Y * 10 expect_warning(p <- predict(fit, newdata = nd), regexp = "coordinates") })