test_that("visreg works", { skip_on_cran() skip_if_not_installed("visreg") # first test against glmmTMB outputs pcod_2011$fyear <- as.factor(pcod_2011$year) # for binomial fit_glm <- glmmTMB::glmmTMB( present ~ poly(depth_scaled, 2) + fyear, data = pcod_2011, family = binomial("logit") ) v1 <- visreg::visreg(fit_glm, xvar = "depth_scaled", nn = 10) v1r <- visreg::visreg(fit_glm, xvar = "depth_scaled", nn = 10, scale = "response") fit_sdm <- sdmTMB( present ~ poly(depth_scaled, 2) + fyear, data = pcod_2011, spatial = "off", family = binomial("logit") ) v2 <- visreg::visreg(fit_sdm, xvar = "depth_scaled", nn = 10) v2r <- visreg::visreg(fit_sdm, xvar = "depth_scaled", nn = 10, scale = "response") # check that these models are matching expect_equal(AIC(fit_glm), AIC(fit_sdm), tolerance = 1e-6) # check that output is visreg expect_identical(class(v2), "visreg") # check which elements match between glmm and sdmTMB versions expect_equal(v2$fit, v1$fit, tolerance = 1e-6) expect_equal(v2r$fit, v1r$fit, tolerance = 1e-6) # residuals are calculated for all original data expect_identical(nrow(v2r$res), nrow(v1r$res)) # # the residuals are calculated differently, and are larger for sdmTMB # expect_equal(v2$res$visregRes, v1$res$visregRes, tolerance = 1e-6) mean(abs(v2$res$visregRes)) mean(abs(v1$res$visregRes)) # for gamma pcod_pos <- dplyr::filter(pcod_2011, present > 0) fit_glm <- glmmTMB::glmmTMB( density ~ poly(depth_scaled, 2) + fyear, data = pcod_pos, family = Gamma("log") ) v1 <- visreg::visreg(fit_glm, xvar = "depth_scaled", nn = 10) v1r <- visreg::visreg(fit_glm, xvar = "depth_scaled", nn = 10, scale = "response") ## requires ggplot # (g1 <- visreg::visreg(fit_glm, xvar = "depth_scaled", nn = 10, # scale = "response", rug = FALSE , # gg=TRUE)) fit_sdm <- sdmTMB( density ~ poly(depth_scaled, 2) + fyear, data = pcod_pos, spatial = "off", family = Gamma("log") ) v2 <- visreg::visreg(fit_sdm, xvar = "depth_scaled", nn = 10) v2r <- visreg::visreg(fit_sdm, xvar = "depth_scaled", nn = 10, scale = "response") # (g2 <- visreg::visreg(fit_sdm, xvar = "depth_scaled", nn = 10, # scale = "response", rug = FALSE, # gg=TRUE)) # check that these models are matching expect_equal(AIC(fit_glm), AIC(fit_sdm), tolerance = 1e-6) # check that output is visreg expect_identical(class(v2), "visreg") # check which elements match between glmm and sdmTMB versions expect_equal(v2r$fit, v1r$fit, tolerance = 1e-6) # residuals are calculated for all original data expect_identical(nrow(v2r$res), nrow(v1r$res)) # # the residuals are calculated differently, and this time they are much larger for glmmTMB # expect_equal(v2$res$visregRes, v1$res$visregRes, tolerance = 1e-6) mean(abs(v2$res$visregRes)) mean(abs(v1$res$visregRes)) # with smoother, tweedie, and reml fit <- sdmTMB( density ~ s(depth_scaled) + fyear, data = pcod_2011, mesh = pcod_mesh_2011, spatial = "off", reml = TRUE, family = tweedie() ) visreg::visreg(fit, xvar = "depth_scaled", nn = 10) visreg::visreg(fit, xvar = "fyear", nn = 10) visreg::visreg(fit, xvar = "depth_scaled", scale = "response", nn = 10) visreg::visreg2d(fit, xvar = "fyear", yvar = "depth_scaled", nn = 10) v <- visreg::visreg(fit, xvar = "depth_scaled", nn = 10) expect_identical(class(v), "visreg") # works with a spatiotemporal model with time that isn't also a fixed effect pcod$fyear <- as.factor(pcod$year) mesh <- make_mesh(pcod, c("X", "Y"), cutoff = 20) fit <- sdmTMB( density ~ 1 + poly(depth_scaled, 2) + (1|fyear), data = pcod, mesh = mesh, time = "year", spatial = "on", spatiotemporal = TRUE, family = tweedie() ) v <- visreg::visreg(fit, xvar = "depth_scaled", nn = 10) expect_identical(class(v), "visreg") visreg::visreg(fit, xvar = "fyear", nn = 10) visreg::visreg(fit, xvar = "depth_scaled", scale = "response", nn = 10) visreg::visreg2d(fit, xvar = "fyear", yvar = "depth_scaled") # works with RW models fit_rw <- sdmTMB( density ~ 1 + poly(depth_scaled, 2), data = pcod_2011, mesh = pcod_mesh_2011, time = "year", spatial = "off", spatiotemporal = "rw", family = tweedie() ) visreg::visreg(fit_rw, xvar = "depth_scaled", nn = 10) # works with ar1 models fit_ar1 <- sdmTMB( density ~ 1 + poly(depth_scaled, 2), data = pcod_2011, mesh = pcod_mesh_2011, time = "year", spatial = "off", spatiotemporal = "ar1", family = tweedie() ) visreg::visreg(fit_ar1, xvar = "depth_scaled", nn = 10) # Delta model example: fit_dg <- sdmTMB( density ~ s(depth_scaled, year, k = 8), data = pcod_2011, mesh = pcod_mesh_2011, spatial = "off", family = delta_gamma() ) visreg_delta(fit_dg, xvar = "depth_scaled", model = 1, nn = 10) visreg_delta(fit_dg, xvar = "depth_scaled", model = 2, nn = 10) v3 <- visreg_delta(fit_dg, xvar = "depth_scaled", model = 1, scale = "response", nn = 10 ) fit_bin <- sdmTMB( present ~ s(depth_scaled, year, k = 8), data = pcod_2011, mesh = pcod_mesh_2011, spatial = "off", family = binomial() ) v4 <- visreg::visreg(fit_bin, xvar = "depth_scaled", scale = "response", nn = 10 ) # outputs differ because response is still called density even for model 1 of a delta model # expect_equal(v3$fit, v4$fit, tolerance = 1e-6) # check that fit values match between binomial and model 1 of the delta expect_equal(v3$fit$visregFit, v4$fit$visregFit, tolerance = 1e-6) visreg_delta(fit_dg, xvar = "depth_scaled", model = 2, scale = "response", nn = 10 ) visreg2d_delta(fit_dg, xvar = "depth_scaled", yvar = "year", model = 2, scale = "response", nn = 10 ) visreg2d_delta(fit_dg, xvar = "depth_scaled", yvar = "year", model = 1, scale = "response", nn = 10 ) visreg2d_delta(fit_dg, xvar = "depth_scaled", yvar = "year", model = 1, nn = 10) visreg2d_delta(fit_dg, xvar = "depth_scaled", yvar = "year", model = 2, nn = 10) v <- visreg_delta(fit_dg, xvar = "depth_scaled", model = 1, nn = 10) expect_identical(class(v), "visreg") v <- visreg2d_delta(fit_dg, xvar = "depth_scaled", yvar = "year", model = 2, nn = 10) expect_identical(class(v), "visreg2d") }) test_that("visreg works with extra time #330", { skip_on_cran() pcod_2011$fyear <- as.factor(pcod_2011$year) fit <- sdmTMB( density ~ 0 + depth_scaled, time = "year", spatial = "off", spatiotemporal = "off", time_varying = ~ 1, data = pcod_2011, family = tweedie(), extra_time = c(2012, 2014, 2016) ) v <- visreg::visreg(fit, "depth_scaled") expect_s3_class(v, 'visreg') })