test_that("SVC are estimated correctly for binomial and delta models", { skip_on_cran() skip_on_ci() local_edition(2) d <- pcod d$year_scaled <- as.numeric(scale(d$year)) mesh10 <- make_mesh(d, c("X", "Y"), cutoff = 10) m1 <- sdmTMB( data = d, formula = present ~ 1 + year_scaled, spatial_varying = ~ 0 + year_scaled, mesh = mesh10, family = binomial() ) p <- predict(m1) pnd <- predict(m1, newdata = d) expect_identical(names(p), names(pnd)) expect_equal(p$est, pnd$est) expect_equal(p$zeta_s_year_scaled, pnd$zeta_s_year_scaled) # m1.1 <- sdmTMB( # data = d, # formula = present ~ 1 + year_scaled, # spatial_varying = ~ 1 + year_scaled, #< # spatial = "off", #< # mesh = mesh10, # family = binomial() # ) # expect_equal(m1$model$objective, m1.1$model$objective) b1 <- tidy(m1, effects = "ran_pars", conf.int = TRUE) expect_equal(b1$estimate[3], 0.312, tolerance = 0.1) m1.2 <- sdmTMB( data = d, formula = present ~ 1 + year_scaled, spatial_varying = ~ 1 + year_scaled, spatial = "on", mesh = mesh10, family = binomial() ) expect_equal(m1$model$objective, m1.2$model$objective) # warn: probably don't want to do this! expect_message({ m1.3 <- sdmTMB( data = d, formula = present ~ 1 + year_scaled, spatial_varying = ~ 0 + as.factor(year), #< spatial = "on", #< mesh = mesh10, family = binomial(), do_fit = FALSE ) }, regexp = "intercept") # better: m1.4 <- sdmTMB( data = d, formula = present ~ 1 + year_scaled, spatial_varying = ~ 0 + as.factor(year), spatial = "off", mesh = mesh10, family = binomial() ) m1.4 m1.5 <- sdmTMB( data = d, formula = present ~ 1 + year_scaled, spatial_varying = ~ 1 + as.factor(year), spatial = "on", mesh = mesh10, family = binomial() ) m1.5 p <- predict(m1.5, newdata = d) # also check that binomial portion of delta model matches the above m2 <- sdmTMB( data = d, formula = density ~ 1 + year_scaled, spatial_varying = ~ 0 + year_scaled, mesh = mesh10, family = delta_gamma() ) b2 <- tidy(m2, effects = "ran_pars", conf.int = TRUE) expect_equal(b2$estimate[3], b1$estimate[3], tolerance = 1e-3) }) test_that("Delta model with spatially varying factor predictor and no spatiotemporal field works #237", { # https://github.com/pbs-assess/sdmTMB/issues/237 skip_on_cran() skip_on_ci() pcod_q2 <- pcod_2011 pcod_q1 <- pcod_2011 pcod_q1$quarter <- as.factor(1) pcod_q2$quarter <- as.factor(2) set.seed(123) pcod_q2$density <- pcod_q2$density + rnorm(10, 20, n = nrow(pcod_2011)) # just adding some difference between quarters.. pcod2 <- rbind(pcod_q1, pcod_q2) # Fit delta model with spatially varying quarter effect mesh <- make_mesh(pcod2, c("X", "Y"), cutoff = 30) m <- sdmTMB(density ~ 0 + as.factor(year) + quarter, data = pcod2, mesh = mesh, family = delta_gamma(link1 = "logit", link2 = "log"), spatiotemporal = "off", spatial = "off", # since spatially varying predictor is a factor spatial_varying = ~0 + quarter, time = "year", control = sdmTMBcontrol(newton_loops = 1L) ) expect_s3_class(m, "sdmTMB") expect_true(sum(is.na(m$sd_report$sd)) == 0L) }) test_that("Factor handling for SVC models works #269", { skip_on_cran() skip_on_ci() set.seed(1) pcod_2011$vessel <- sample(c("A", "B"), size = nrow(pcod_2011), replace = TRUE) pcod_2011$vessel <- as.factor(pcod_2011$vessel) fit <- sdmTMB(present ~ vessel, spatial_varying = ~ vessel, spatial = "on", mesh = pcod_mesh_2011, data = pcod_2011 ) p1 <- predict(fit, pcod_2011) p2 <- predict(fit, newdata = pcod_2011) expect_equal(p1$est, p2$est) p3 <- predict(fit, newdata = pcod_2011[pcod_2011$vessel == "A", ]) p4 <- p2[p2$vessel == "A", ] expect_equal(p3$est, p4$est) }) test_that("SVC throws a warning if character class #269", { skip_on_cran() skip_on_ci() pcod_2011$vessel <- sample(c("A", "B"), size = nrow(pcod_2011), replace = TRUE) expect_warning({ fit <- sdmTMB(present ~ vessel, spatial_varying = ~ vessel, spatial = "on", mesh = pcod_mesh_2011, data = pcod_2011 ) }, regexp = "character") })