pcod_spde <- make_mesh(pcod, c("X", "Y"), cutoff = 15) pcod_pos <- subset(pcod, density > 0) pcod_spde_pos <- make_mesh(pcod_pos, c("X", "Y"), mesh = pcod_spde$mesh) test_that("Delta-Gamma family fits", { skip_on_cran() fit_dg <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, time = "year", family = delta_gamma(), control = sdmTMBcontrol(newton_loops = 1) ) fit_dg$sd_report nd <- replicate_df(qcs_grid, "year", unique(pcod$year)) p <- predict(fit_dg, newdata = nd) expect_equal( round(tidy(fit_dg, "ran_pars", model = 1)$estimate, 3), c(39.334, 2.289, 0.808) ) expect_equal( round(tidy(fit_dg, "ran_pars", model = 2)$estimate, 3), c(16.224, 0.992, 0.656, 1.426) ) p <- predict(fit_dg, newdata = nd, return_tmb_object = TRUE) ind_dg <- get_index(p, bias_correct = FALSE) # check fit_bin <- sdmTMB(present ~ 1, data = pcod, mesh = pcod_spde, time = "year", family = binomial(), control = sdmTMBcontrol(newton_loops = 1) ) fit_gamma <- sdmTMB(density ~ 1, data = pcod_pos, mesh = pcod_spde_pos, time = "year", family = Gamma(link = "log"), control = sdmTMBcontrol(newton_loops = 1) ) sr_bin <- as.list(fit_bin$sd_report, "Estimate") sr_gamma <- as.list(fit_gamma$sd_report, "Estimate") sr_dg <- as.list(fit_dg$sd_report, "Estimate") expect_equal(sr_bin$b_j[1], sr_dg$b_j[1], tolerance = 1e-4) expect_equal(sr_gamma$b_j[1], sr_dg$b_j2[1], tolerance = 1e-4) expect_equal(sr_gamma$ln_phi, sr_dg$ln_phi[2], tolerance = 1e-4) expect_equal(sr_gamma$ln_tau_O, sr_dg$ln_tau_O[2], tolerance = 1e-4) expect_equal(sr_gamma$ln_tau_E, sr_dg$ln_tau_E[2], tolerance = 1e-4) expect_equal(sr_gamma$ln_kappa[1,1], sr_dg$ln_kappa[1,2], tolerance = 1e-4) expect_equal(sr_bin$ln_kappa[1,1], sr_dg$ln_kappa[1,1], tolerance = 1e-4) }) test_that("Delta-lognormal family fits", { skip_on_cran() skip_on_ci() fit_dln <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", family = delta_lognormal() ) s <- as.list(fit_dln$sd_report, "Std. Error") expect_true(sum(is.na(s$b_j)) == 0L) }) test_that("delta_poisson_link_gamma() family fits", { skip_on_cran() fit_plg <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", family = delta_poisson_link_gamma() ) fit_plg$sd_report s <- as.list(fit_plg$sd_report, "Std. Error") expect_true(sum(is.na(s$b_j)) == 0L) # p <- predict(fit_plg, newdata = qcs_grid, type = "response") # p <- predict(fit_plg, newdata = pcod, type = "response") # expect_error(p <- predict(fit_plg, newdata = NULL, type = "response")) }) test_that("delta_poisson_link_lognormal() family fits", { skip_on_cran() skip_on_ci() fit_plg <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", family = delta_poisson_link_lognormal() ) fit_plg$sd_report s <- as.list(fit_plg$sd_report, "Std. Error") expect_true(sum(is.na(s$b_j)) == 0L) }) test_that("delta_truncated_nbinom2 family fits", { skip_on_cran() skip_on_ci() pcod$count <- round(pcod$density) fit_dtnb2 <- sdmTMB(count ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", family = delta_truncated_nbinom2() ) s <- as.list(fit_dtnb2$sd_report, "Std. Error") expect_true(sum(is.na(s$b_j)) == 0L) fit_dtnb2$sd_report }) test_that("delta_truncated_nbinom1 family fits", { skip_on_cran() skip_on_ci() pcod$count <- round(pcod$density) fit_dtnb1 <- sdmTMB(count ~ 1, data = pcod, mesh = pcod_spde, spatial = "off", family = delta_truncated_nbinom1() ) s <- as.list(fit_dtnb1$sd_report, "Std. Error") expect_true(sum(is.na(s$b_j)) == 0L) fit_dtnb1$sd_report }) test_that("Anisotropy with delta model", { skip_on_cran() suppressWarnings({ fit_dg <- sdmTMB(density ~ 1, data = pcod, mesh = pcod_spde, time = "year", family = delta_gamma(), anisotropy = TRUE, control = sdmTMBcontrol( newton_loops = 1, map = list(ln_H_input = factor(c(1L, 2L, 3L, 4L))) ) ) }) fit_bin <- sdmTMB(present ~ 1, data = pcod, mesh = pcod_spde, time = "year", family = binomial(), anisotropy = TRUE, control = sdmTMBcontrol(newton_loops = 1) ) p1 <- plot_anisotropy2(fit_bin) p2 <- plot_anisotropy2(fit_dg) expect_equal(p2, p1, tolerance = 1e-6) fit_gamma <- sdmTMB(density ~ 1, data = pcod_pos, mesh = pcod_spde_pos, time = "year", family = Gamma(link = "log"), anisotropy = TRUE, control = sdmTMBcontrol(newton_loops = 1) ) p3 <- plot_anisotropy2(fit_gamma) p4 <- plot_anisotropy2(fit_dg, model = 2) ## not sure why this isn't working # expect_equal(p4, p3, tolerance = 1e-6) fit_bin$sd_report fit_gamma$sd_report fit_dg$sd_report sr_bin <- as.list(fit_bin$sd_report, "Estimate") sr_gamma <- as.list(fit_gamma$sd_report, "Estimate") sr_dg <- as.list(fit_dg$sd_report, "Estimate") expect_equal(sr_bin$ln_H_input[1,1], sr_dg$ln_H_input[1,1], tolerance = 1e-4) expect_equal(sr_gamma$ln_H_input[1,1], sr_dg$ln_H_input[1,2], tolerance = 1e-4) # all estimates still match? expect_equal(sr_bin$b_j[1], sr_dg$b_j[1], tolerance = 1e-4) expect_equal(sr_bin$ln_kappa[1,1], sr_dg$ln_kappa[1,1], tolerance = 1e-4) expect_equal(sr_gamma$b_j[1], sr_dg$b_j2[1], tolerance = 1e-4) expect_equal(sr_gamma$ln_phi, sr_dg$ln_phi[2], tolerance = 1e-4) expect_equal(sr_gamma$ln_tau_O, sr_dg$ln_tau_O[2], tolerance = 1e-4) expect_equal(sr_gamma$ln_tau_E, sr_dg$ln_tau_E[2], tolerance = 1e-4) expect_equal(sr_gamma$ln_kappa[1,1], sr_dg$ln_kappa[1,2], tolerance = 1e-4) })