# Expected output --------------------------------------------------------- iris_exp <- tibble::tibble( term = c("frequency", "locations_n"), mean = c(9.74025974025974, 1.636363636363636464566), sd = c(9.917292973974667802395, 0.5106520833593400920947), median = c(7, 2), min = c(1, 1), max = c(50, 3), na_count = c(0, 0), na_rate = c(0, 0), ) mtcars_exp <- tibble::tibble( term = c("frequency", "locations_n"), mean = c(2.227848101265822666761, 1.082278481012658222227), sd = c(4.980086119759305596233, 0.3379441380253598303796), median = c(1, 1), min = c(1, 1), max = c(37, 3), na_count = c(0, 0), na_rate = c(0, 0), ) nums <- c(1:10, 3:7, 9) nums_exp <- tibble::tibble( term = "frequency", mean = 1.6, sd = 0.5163977794943221955037, median = 2, min = 1, max = 2, na_count = 0, na_rate = 0, ) # Testing ----------------------------------------------------------------- test_that("`audit()` for `duplicate_count()` works correctly by default", { iris %>% duplicate_count() %>% audit() %>% expect_equal(iris_exp) mtcars %>% duplicate_count() %>% audit() %>% expect_equal(mtcars_exp) nums %>% duplicate_count() %>% audit() %>% expect_equal(nums_exp) })